1. Trang chủ
  2. » Giáo Dục - Đào Tạo

10 đề thi hóa chọn lọc

9 225 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 9
Dung lượng 668,58 KB

Nội dung

TUYN TP CÂU HO HÀM CHN LC 1 | C NHN V MÃI MÃI tp câu hi liên quan to hàm chn lc. Có mt s c anh ch tng hp t các câu hi các em gi ti page I HC CÙNG TH I HC GSTT Chúc các em sc khe tt và tràn tr ng và s t tin trong k thi sp ti! m). Cho hàm s 2x 3 y x1    ,  th (C). 1. Kho sát s bin thiên và v  th (C) ca hàm s  2.  ng thng d: y = x + m  1 ct (C) tm phân bit A, B sao cho tam giác OAB có trng tâm m 24 G; 33     . LI GII +)  m ca (C) và d là: 2x 3 x m 1 x1          2x 3 x m 1 x 1     (do x = 1 không là nghim).  x 2 + (m  2)x + (m  4) = 0 (1). +) Ta có:  (1) = (m  2) 2  4(m  4) = (m  4) 2 + 4 > 0   (1)   i t A(x A ; x A + m  1) và B(x B ; x B + m  1) thì x A , x B là hai nghim phân bit ca (1). nh lí Viét: x A + x B = 2  m. +) G 24 33     ; là trng tâm OAB thì     A B O G A B O O 2 2 m 3 x x x 3x 3 m4 y y y 3y 4 2 m 2m 1 3 3                         . . . Khi m = 4 thì O, A, B không thng hàng. Vy m = 4 tha mãn yêu cu bài toán. Bình lun:                                                                                    .  (1)     2 2 m 3 3 4 2 m 2m 1 3 3              . .  m =  khi  hai (1)  =   , ta có   = x + m     G GG G 2m x 2 3 yx m3 y 3              .  = 1 thì d: y =             TUYN TP CÂU HO HÀM CHN LC 2 | C NHN V MÃI MÃI   Câu 2 m)  2x 2 y x1     1. Kho sát và v  th (C) ca hàm s trên.      LI GII 2. Tm ca h                                             (C) và (                            -et ta có:                           .                                                                                                                                                                                                       .  4 2 4 y x 2mx 2m m        LI GII +) Xét hàm s y = x 4  2mx 2 . Tnh   Ta có: 3 2 x0 y 4x 4mx y 0 xm            ;     m > 0.  4 + 2m) và hai    42 m m m 2m  ; , C   42 m m m 2m; .  TUYN TP CÂU HO HÀM CHN LC 3 | C NHN V MÃI MÃI +) Gm BC  H(0; m 4  m 2 + 2m)  S ABC = 1 2 AH.BC = 2 1 m .2 m 2 = m 2 m . Theo bài ra, S ABC = 1  m 2 m = 1  m = 1, tha mãn. Vy m = 1 là giá tr cn tìm. Bình lun: Tng quát bài toán trên: Cc tr hàm s b 4 + bx 2  Ta có:   32 y 4ax 2bx 2x2ax b     ; 2 x0 y0 b x 2a          (*) + Hàm s c tr  (*) vô nghim hoc có nghim kép  b 2a   0  b0 ab 0      + Hàm s có 3 cc tr   y0   có 3 nghim phân bit  (*) có hai nghim phân bit khác 0   th hàm s m cc tr to thành m   b b b b 0 c y y 2a 2a 2a 2a                                       AB; ; ; ; ;C (ABC cân ti A). * Các kiu câu hi: m cc tr to thành mu  AB = BC. m cc tr to thành mt tam giác vuông cân (và s vuông cân ti A)  AB 2 + AC 2 = BC 2 . m cc tr to thành mt tam giác có din tích S    ABC B C A B 11 S BC.d A,BC x x . y y S 22      . Câu 4 m). Cho hàm s        1. Kho sát s bin thiên và v  th (C) ca hàm s  2. ng thng      2. Gi    m bt kì nng thng    Vì mng thng có dng x=m không là tip tuyn c th ng th dng:           ng thng d là tip tuyn ca (C) khi và ch khi h sau có nghim: 3 2 3 2 2 22 x 3 2 k(x m) 9m 7 x 3 2 (3 6 )(x m) 9m 7 3 6 k 3 6 k                        x x x x x x x x Qua M k c ba tin (C) khi h trên có ba nghim phân bim phân bit: 3 2 2 2 2 3 3m 6m 2 (5 3m)x 5 9m 0               x x x x 9m 5=0 (x 1) x u kin ca m là: 2 2 2 1 m (5 3m) 8(5 9m) 0 9m 42m 15 0 3 m5 m1 2.1 (5 3m).1 5 9m 0 m1                                     Vm M cn tìm có t    vi  1 m1 3   Bình lun: c và trình bày cht ch bài toán trên, cn nm vng mt s m quan tr TUYN TP CÂU HO HÀM CHN LC 4 | C NHN V MÃI MÃI - c nu có tip tuyn thì tip tuyn ti h s i gin xét  không tip tuyn c th hàm s. Nh u di s góc k. Nu quên lp luu này thì li gii s thiu cht ch. - (d): y = kx + p tip xúc v th hàm s f(x)                 (1) có 3 nghim. Kinh nghim gic tip theo là nhm nghi tìm ra mt nghi s là   i vi bài này   ). h nhân t   mng:               mà m n  Hàm s có 3 nghim           có 2 nghim phân bit khác   c m. Nu không th nhm ra nghi tin hi xét hàm bc 3 truyn thng. Câu 5 m). Cho hàm s x2 y 2x 1     th (C). 1. Kho sát s bin thiên và v  th (C) ca hàm s. 2. Ving th3; 13) sao cho d ct (C) ti hai m phân bit A, B sao cho CA = 2 3 CB. LI GII +) A  (C)  A a2 a; 2a 1      (với a 1 2   ). B  (C)  B b2 b; 2b 1      (với 1 b 2   ). +) 3CA 2CB 2 CA CB 3 3CA 2CB        Ta có: a2 CA a 3; 13 2a 1         và b2 CB b 3; 13 2b 1         .   3a 9 2b 6 2b 3a 3 3CA 2CB a 2 b 2 a 2 3a 3 4 3 13 2 13 3 13 26 2a 1 2b 1 2a 1 3a 3 1                                                (1) (2) . . . (2)          a 2 3a 1 3 13 3a 2 3a 4 132a 1 3a 4 3a 1 2a 1 2a 1 3a 4                  2 75a 150a 75 0 a 1        1; 3); B(0; 2).     2b 15 3a 3a 9 2b 6 3CA 2CB a 2 3a 15 4 a 2 b 2 3 13 26 3 13 2 13 2a 1 1 15 3a 2a 1 2b 1                                                 (3) (4) . (4)            3a 2 3a 19 65 3a 2 3a 14 3a 19 2a 1 653a 14 2a 1 2a 1 3a 14                  22 13 2 26 a 5 375a 1950a 975 0 5a 26a 13 0 13 2 26 a 5                     TUYN TP CÂU HO HÀM CHN LC 5 | C NHN V MÃI MÃI                    Suy ra: 13 2 26 23 2 26 A; 5 24 4 26          và 18 3 26 28 3 26 ; 5 31 6 2 B 6          .                                                                                     a 1 2   và b 1 2     Câu 6            LI GII                                                                                                                                                   Câu 7 m). Cho hàm s y = x 3  3x 2 + 1  TUYN TP CÂU HO HÀM CHN LC 6 | C NHN V MÃI MÃI 1. Kho sát s bin thiên và v  th (C) ca hàm s  2. Vih tip tuyn v th (C) bit tip tuyn song song vng thng (d): 9x  y + 6 = 0.   y = 3x 2  6x.  d: 9x  y + 6 = 0 nên tip tuy9.  22 x1 3x 6x 9 x 2x 3 0 x 3              Vi x = 1  y(1) = p tuyi do trùng vng thng d).  Vi x = 3  y(3) p tuyng trình là y = 9x  26, tha mãn. Vp tuyn ci tìm là y = 9x  26.   thì h Chú ý: dùng t thìng thng vn có th trùng nhau.  0 ; y 0   0 f .(x  x 0 ) + y 0 .  Câu 8 m). Cho hàm s y = 2x 1 x1    th (C). 1. Kho sát s bin thiên và v  th (C) ca hàm s. 2. Vit p tip tuyn ca (C), bit tip tuyn này ct trc hoành và trc tung lt ti m A, B phân bit tha mãn AB = 82 OB. LI GII +) Ta có:   2 1 y x1     .  0 0 0 2x 1 M x ; x1             0 0 2 0 0 2x 1 1 y x x x1 x1        .    2 00 A 2x x 10;    2 00 2 0 2x 2x 1 B0 x1         ; .  2 2 2 OA OB AB . Mt khác ta có: AB 82.OB . 2 2 2 2 2 OA OB 82.OB OA 81.OB OA 9.OB       (1). Ta có: (1)      2 0 2 00 0 0 0 2 0 0 x2 2x 2x 1 2x x 1 9 x 1 9 x4 x1                .   0 = 2, ta có:   15 y x 2 93    .   0 = 4, ta có:   17 y x 4 93     . Bình lun: TUYN TP CÂU HO HÀM CHN LC 7 | C NHN V MÃI MÃI  Mc trong kiu bài tip tuyn c th hàm s. Ta có y'(x 0 ) chính là h s góc tip tuyn c th t p tuyn và có th c t  theo x 0 .   ý d kin AB 82.OB . Sao li là 82 mà không phi là s khác (82 gn 81)? T t hp vi vuông ti O  c gii quyt. TUYN TP CÂU HO HÀM CHN LC 8 | C NHN V MÃI MÃI Câu 9   2x 4 x1    1. Kho sát s bin thiên và v  th ca hàm s (1). 2. m A, B thu th (C) sao cho tip tuyn c th (C) tng thm O, A, B to thành tam giác vuông ti O. LI GII                H s góc ti tip tuyn ca lt là:                      Do 2 tip tuyn song song nên                                                      i O. Ta có:       2a 4 2b 4 OA.OB 0 ab 0 a 1 b 1          (2). Rút b = 2  a t (1) thay vào (2) ta có:                a 1 b 3 2a 4 22 a 4 a 0 b 2 a 2 a 0 a a 3 a 2 a 1 0 a 1 2 a 1 a 2 b 0 a 3 b 1                                       1 (1; 3), B 1 (3; 1); A 2 (0; 4), B 2 (2; 0); A 3 (2; 0), B 2 (0; 4) và A 4 (3; 1), B 4 (1; 3). Nhn xét:  ng bài tp tip tuyn c th hàm s ng phn h s góc ca tip tuyn là y'.  u ki bài cho là  vuông, vì vy ta s dùng vector                t n cách gi t m A, B  Bài t: 1. Cho hàm s x2 y 2x 3    . Vip tuyn c th ct trc tung, trc hoành ti  sao cho  cân ti O. Câu 10      2 y x 2 x 1     C .    C .  d : y 2x 19      C   x 9y 8 0   .        TUYN TP CÂU HO HÀM CHN LC 9 | C NHN V MÃI MÃI  00 N(x ;y ) chính là 0 f'(x )  0   x 9y 8 0   .     ' 00 y y (x x ) y .       00 N(x ;y )  x 9y 8 0   , ta suy ra 2 0 0 0 f'(x ) 9 3x 3 9 x 2       .   00 x 2 y 4    y (x 2).9 4 9x 14     . T y 2x 19 y 9x 14         M(3; 13).   00 x 2 y 0      y (x 2).9 9x 18    .  y 2x 19 y 9x 18         M 1 207 11 11    ; .  mãn yêu câu bài toán là M 1 (3; 13) và M 2 1 207 11 11    ; . . tt và tràn tr ng và s t tin trong k thi sp ti! m). Cho hàm s 2x 3 y x1    ,  th (C). 1. Kho sát s bin thi n và v  th (C) ca hàm s  2 x x . y y S 22      . Câu 4 m). Cho hàm s        1. Kho sát s bin thi n và v  th (C) ca hàm s  2. ng thng    . u di s góc k. Nu quên lp luu này thì li gii s thi u cht ch. - (d): y = kx + p tip xúc v th hàm s f(x)              

Ngày đăng: 20/12/2014, 03:41

TỪ KHÓA LIÊN QUAN

w