1. Trang chủ
  2. » Giáo án - Bài giảng

đề thi thử dh hay số 64

6 97 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 6
Dung lượng 275,43 KB

Nội dung

TRNGIHCVINH KHOSTCHTLNGLP12LN2,NM2011 TRNGTHPTCHUYấN MễN:TONThigianlmbi:180phỳt I.PHNCHUNHCHOTTCTHSINH(7im) CõuI. (2,0im) 1. Khosỏtsbinthiờnvvth(H)hms x 1 y x 2 - + = - . 2. Tỡmtrờn(H)cỏcimA,BsaochodiAB=4vngthngABvuụnggúcvingthngy=x. CõuII(2,0 im) 1. Giiphngtrỡnh ( ) sin 2x cos x 3 cos 2x sin x 0 2sin 2x 3 + - + = - . 2. Giihphngtrỡnh 4 2 2 2 2 x 4x y 4y 2 x y 2x 6y 23 ỡ + + - = ù ớ + + = ù ợ . CõuIII.(1,0im).Tớnh dintớchhỡnhphnggiihnbithhms ( ) 2 x ln x 2 y 4 x + = - vtrchonh. CõuIV.(1,0im). ChohỡnhchúpS.ABCDcúỏylhỡnhchnhtviAB=a,AD= a 2 ,gúcgiahaimt phng(SAC)v(ABCD)bng60 0 .GiHltrungimcaAB.BitmtbờnSABltamgiỏccõn tinhSv thucmtphngvuụnggúcvimtphngỏy.TớnhthtớchkhichúpS.ABCDvbỏnkớnhmtcungoitip hỡnhchúpS.AHC CõuV.(1,0im)Chocỏcsthcdngx,y,zthomón 2 2 2 x y z 2xy 3(x y z) + + + = + + .Tỡmgiỏtrnhnht cabiuthc 20 20 P x y z x z y 2 = + + + + + + . II.PHNRIấNG(3,0im) a.Theochngtrỡnhchun CõuVIa. (2,0im) 1. TrongmtphngtoOxychotamgiỏcABCcúphngtrỡnhchangcaovngtrungtuynk tnhAlnltcúphngtrỡnhx 2y 13=0v13x 6y 9=0.TỡmtoB,Cbittõmng trũnngoitiptamgiỏcABClI(51). 2. TrongkhụnggiantoOxyzchoimA(100),B(212),C(113)vngthng x 1 y z 2 : 1 2 2 - - D = = - .Vitphngtrỡnhmtcucútõmthucngthng D ,iquaimAvctmt phng(ABC)theomtngtrũnsaochongtrũncúbỏnkớnhnhnht CõuVIIa.(1,0im) Tỡmsphczthomón z 3i 1 iz - = - v 9 z z - lsthuno. b.Theochngtrỡnhnõngcao CõuVIb(2,0im) 1. TrongmtphngtoOxychongtrũn(C): 2 2 x y 4x 2y 15 0 + - + - = .GiIltõmngtrũn(C). ngthng D iquaM(13)ct(C) tihaiimAvB.Vitphngtrỡnh ngthng D bittam giỏcIABcúdintớchbng8vcnhABlcnhlnnht. 2. TrongkhụnggiantoOxyzchoimM(110)vngthng x 2 y 1 z 1 : 2 1 1 - + - D = = - vmtphng (P):x +y+z 2=0.TỡmtoimAthucmtphng(P)bitngthngAMvuụnggúcvi D v khongcỏchtAnngthng D bng 33 2 . CõuVIIb.(1,0im)Chocỏcsphcz 1 ,z 2 thomón 1 2 1 2 z z z z 0 - = = > .Tớnh 4 4 1 2 2 1 z z A z z ổ ử ổ ử = + ỗ ữ ỗ ữ ố ứ ố ứ chihao@moet.edu.vn giti www.laisac.page.tl TRƯỜNGĐẠIHỌCVINH TRƯỜNGTHPTCHUYÊN ĐÁP ÁNĐỀK HẢOSÁTCHẤTLƯỢNGLỚP12LẦN2,NĂM2011 MÔN: TOÁN;Thờigianlàmbài:180phút Câu Đápán Điểm 1.(1,0điểm) a.Tậpxácđịnh: }.2{\R =D b.Sựbiếnthiên: *Chiềubiếnthiên:Tacó 2,0 )2( 1 ' 2 ¹ " > - = x x y . Suyrahàmsốđồngbiếntrêncáckhoảng )2;(-¥ và );2( ¥ + . *Giớihạn: 1 2 1 limlim - = - + - = +¥ ® +¥ ® x x y xx và 1 2 1 limlim - = - + - = -¥ ® -¥ ® x x y xx ; +¥ = - + - = - - ® ® 2 1 limlim 22 x x y xx và -¥ = - + - = + + ® ® 2 1 limlim 22 x x y xx . *Tiệmcận:Đồthịcóđườngtiệmcậnnganglà 1 - =y ;đườngtiệmcậnđứnglà 2 =x . 0,5 *Bảngbiếnthiên: x ¥ - 2 ¥ + 'y + + y ¥ + 1 - 1 - ¥ - c.Đồthị: Đ ồthịh àms ốcắttrụcho ànhtại(1;0), cắt trụctung tại ) 2 1 ;0( - và nhậngiao điểm )1;2( -I củahaitiệmcậnlàmtâm đốixứng. 0,5 2.(1,0điểm) Vì đư ờngthẳng ABvuônggócvới xy = nênphươngtrìnhcủaABlà mxy + - = . HoànhđộcủaA, Blànghiệmcủaphươngtrình mx x x + - = - + - 2 1 ,hayphươngtrình 2,012)3( 2 ¹ = + + + - xmxmx (1) Dophươngtrình(1)có mmmmm " > + - = + - + = D ,052)12(4)3( 22 nêncóhainghiệm phânbiệt 21 ,xx vàcảhainghiệmđềukhác2.TheođịnhlíViettacó 12;3 2121 + = + = + mxxmxx 0,5 I. (2,0 điểm) Theogiảthiếtbàitoántacó 16)()(16 2 12 2 12 2 = - + - Û = yyxxAB .130328)12(4)3( 84)(8)(16)()( 22 21 2 21 2 12 2 12 2 12 - = Ú = Û = - - Û = + - + Û = - + Û = - Û = - + + - + - Û mmmmmm xxxxxxmxmxxx *Với 3 =m phươngtrình(1)trởthành 23076 2 ± = Û = + - xxx .SuyrahaiđiểmA, Bcầntìmlà )2;23(),2;23( - - + . *Với 1 - =m tacóhaiđiểm A,Bcầntìmlà )22;21( - - + và )22;21( + - - . VậycặpđiểmTM: )2;23(),2;23( - - + hoặc )22;21( - - + , )22;21( + - - . 0,5 1.(1,0điểm) II. (2,0 Điềukiện: p p  kxx + ¹ Û ¹ 62 3 2sin và ., 3 Z Î + ¹ kkx p p  x O 1 1 - 2 y I Khiđópt 32sin2)sin2(cos3cos2sin - = + - + Û xxxxx 0)2cos3)(sin3cos2( 0)2cos3)(3cos2()3cos2(sin 03cos2cos3sin32sin = - + + Û = - + + + Û = - - + + Û xxx xxxx xxxx 0,5 ê ê ê ê ë é + = + ± = Û ê ê ê ê ë é = ÷ ø ö ç è æ + - = Û p p p p p  2 6 2 6 5 1 3 sin 2 3 cos kx kx x x Đốichiếuđiềukiện,tacónghiệmcủaphươngtrìnhlà Z Î + = kkx ,2 6 5 p p  . 0,5 2.(1,0điểm) Hệ ï î ï í ì = + + = - + + Û 236)2( 10)2()2( 2 222 yyx yx Đặt .2,2 2 - = + = yvxu Khiđóhệtrởthành ê ë é = - = + = = + Û î í ì = + + = + Û î í ì = + + + - = + 67,12 3,4 19)(4 10 23)2(6)4)(2( 10 2222 uvvu uvvu vuuv vu vvu vu 0,5 điểm) TH1. 67,12 = - = + uvvu ,hệvônghiệm. TH2. î í ì = = + 3 4 uv vu ,tacó ê ë é = = = = 3,1 1,3 vu vu *Với î í ì = = 1 3 v u tacó ê ë é = ± = Û î í ì = = 3 1 3 1 2 y x y x *Với î í ì = = 3 1 v u tacó î í ì = - = 3 1 2 y x ,hệvônghiệm. Vậynghiệm(x,y)củahệlà ).3;1(),3;1( - Chúý:HScóthểgiảitheophươngphápthế 2 x theoytừphươngtrìnhthứhaivàophương trìnhthứnhất. 0,5 III. (1,0 điểm) Tacóphươngtrình ê ë é - = = Û = - + 1 0 0 4 )2ln( 2 x x x xx .Suyrahìnhphẳngcầntínhdiệntíchchính làhìnhphẳnggiớihạnbởi cácđường .0,1,0, 4 )2ln( 2 = - = = - + = xxy x xx y Dođódiệntíchcủahìnhphẳnglà .d 4 )2ln( d 4 )2ln( 0 1 2 0 1 2 ò ò - - - + - = - + = x x xx x x xx S . Đặt x x x vxu d 4 d),2ln( 2 - - = + = .Khiđó 2 4, 2 d d xv x x u - = + = . Theocôngthứctíchphântừngphầntacó .d 2 4 2ln2d 2 4 )2ln(4 0 1 2 0 1 2 1 0 2 ò ò - - - + - - = + - - + - = x x x x x x xxS 0,5 Đặt .sin2 tx = Khiđó ttx dcos2d = .Khi ; 6 ,1 p - = - = tx khi .0,0 = = tx Suyra .3 3 2)cos(2d)sin1(2d 2sin2 cos4 d 2 4 0 6 6 0 0 6 2 0 1 2 - + = + = - = + = + - = ò ò ò - - - - p p p p  ttttt t t x x x I Suyra . 3 322ln2 p - + - =S 0,5 +)Từgiảthiếtsuyra ).(ABCDSH ^ Vẽ )( ACFACHF Î ^ A CSF ^ Þ (địnhlíbađườngvuônggóc). Suyra .60 0 = ÐSFH Kẻ ).( ACEACBE Î ^ Khiđó . 32 2 2 1 a BEHF = = Tacó = = 0 60tan.HFSH . 2 2a Suyra . 3 . 3 1 3 . a SSHV ABCDABCDS = = 0,5 IV. (1,0 điểm +)Gọi J, r l ầnl ượtlàtâmvàbánkínhđườngtrònngo ạitiếptamgiác AHC .Tacó . 24 33 2 .. 4 .. a S A CHCAH S A CHCAH r ABCAHC = = = Kẻ đường thẳng D qua J và .// SH D Khi đó tâm I của mặt cầu ngoại tiếp hình chóp A HCS. làgiaođiểmcủađườngtrungtrựcđoạn SHvà D trongmặtphẳng(SHJ).Tacó . 4 2 2 22 r SH JHIJIH + = + = Suyrabánkínhmặtcầulà . 32 31 aR = Chúý:HScóthểgiảibằngphươngpháptọa độ. 0,5 Từgiảthiếttacó .)( 2 1 )()(3 222 zyxzyxzyx + + ³ + + = + + Suyra 6 £ + + zyx . 0,5V. (1,0 điểm Khiđó,ápdụngBĐTCôsitacó 2 2 11 4 2 8 2 8 )2( 88 )( - ÷ ÷ ø ö ç ç è æ + + + + ÷ ÷ ø ö ç ç è æ + + + + + + ÷ ø ö ç è æ + + + + + = yzxyy y zxzx zxP .26 2 28 222 )2)(( 8 1212 4 ³ + + + + ³ - + + + + ³ zyxyzx Dấuđẳngthứcxảyrakhivàchỉkhi 3,2,1 = = = zyx . VậygiátrịnhỏnhấtcủaP là26,đạtđượckhi 3,2,1 = = = zyx . 0,5 1.(1,0điểm) Ta có ).8;3( - -A Gọi M là trung điểm BC A HIM// Þ .Tasuyrapt .072: = + - yxIM SuyratọađộM thỏamãn ).5;3( 09613 072 M yx yx Þ î í ì = - - = + - 0,5 VIa. (2,0 điểm) Ptđườngthẳng .011205)3(2: = - + Û = - + - yxyxBC Þ Î BCB ).211;( aaB - Khiđó 0,5 B A H M I C B A S D C E F J I K H ê ë é = = Û = + - Û = 2 4 086 2 a a aaIBIA  .Từđósuyra )7;2(),3;4( CB hoặc ).3;4(),7;2( CB 2.(1,0điểm) Tacó ).3;1;2(),2;1;1( - - - ACAB Suyrapt .01:)( = - - - zyxABC Gọitâmmặtcầu Þ D ÎI )22;2;1( tttI + - .Khiđóbánkínhđườngtrònlà .2 3 6)1(2 3 842 ))(,( 22 22 ³ + + = + + = - = ttt ABCIdIAr Dấuđẳngthứcxảyrakhivàchỉkhi .1 - =t 0,5 Khiđó .5),0;2;2( = - IAI Suyraptmặtcầu .5)2()2( 222 = + + + - zyx 0,5 Đặt ).,( R Î + = babiaz Tacó |1||3| ziiz - = - tươngđươngvới |1||)3(||)(1||)3(| aibibabiaiiba - - = - + Û - - = - + 2)()1()3( 2222 = Û - + - = - + Û babba . 0,5 VIIa. (1,0 điểm) Khi đó 4 )262(5 4 )2(9 2 2 9 2 9 2 23 2 + + + - = + - - + = + - + = - a iaaa a ia ia ia ia z z là số ảo khi và chỉkhi 05 3 = - aa hay 5,0 ± = = aa . Vậycácsốphứccầntìmlà iziziz 25,25,2 + - = + = = . 0,5 1.(1,0điểm) Đườngtròn (C)cótâm ),1;2( -I bánkính .52 =R Gọi H làtrungđiểm AB.Đặt ).520( < < = xxAH Khiđótacó 2 4 1 . 8 20 8 2 (ktm vì ) 2 x IH AB x x x AH IA = é = Û - = Û ê = < ë nên .24 = Þ = IHA H 0,5 PtđườngthẳngquaM: )0(0)3()1( 22 ¹ + = + + - baybxa .03 = - + + Û abbyax Tacó baabaa ba ba IHABId 3 4 00)43(2 |2| 2),( 22 = Ú = Û = - Û = + + Û = = . *Với 0 =a tacópt .03: = + D y *Với . 3 4 ba = Chọn 3 =b tacó 4 =a .Suyrapt .0534: = + + D yx Vậycóhaiđườngthẳng D thỏamãnlà 03 = +y và .0534 = + + yx 0,5 2.(1,0điểm) Gọi(Q)làm ặtphẳngqua M vàvuônggócvới D .Khiđópt .032:)( = - + - zyxQ Tacó ).1;1;1(),1;1;2( PQ nn - TừgiảthiếtsuyraA thuộcgiaotuyến dcủa(P)và(Q). Khiđó )3;1;2(],[ - = = QPd nnu và dN Î)1;0;1( nênptcủa ï î ï í ì - = = + = tz ty tx d 31 21 : . Vì dA Î suyra ).31;;21( tttA - + 0,5 VIb. (2,0 điểm) Gọi Hlàgiaođiểmcủa D vàmặtphẳng(Q).Suyra ). 2 1 ; 2 1 ;1( -H Tacó 7 8 1016214 2 33 ),( 2 = Ú - = Û = - - Û = = D ttttAHAd . Suyra )4;1;1( - -A hoặc ). 7 17 ; 7 8 ; 7 23 ( -A 0,5 VIIb. (1,0 điểm) Đặt w z z = 2 1 tađược 0|||||| 2222 > = = - zwzzwz .Hay 1|||1| = = - ww . Giảsử ),( R Î + = babiaw .Khiđótacó 0,5 M H B I A 1)1( 2222 = + = + - baba hay . 2 3 , 2 1 ± = = ba *Với . 3 sin 3 cos 2 3 2 1 p p  iiw + = + = Tacó 3 4 sin 3 4 cos 4 p p  iw + = và . 3 4 sin 3 4 cos 1 4 p p  i w - = ÷ ø ö ç è æ Dođó 1 3 4 cos2 - = = p  A . *Với iw 2 3 2 1 - = ,tươngtựtacũngcó 1 - =A . Chúý: HScóthểgiảitheocáchbiếnđổitheodạngđạisốcủasốphức. 0,5 . + - + = - a iaaa a ia ia ia ia z z là số ảo khi và chỉkhi 05 3 = - aa hay 5,0 ± = = aa . Vậycác số phứccầntìmlà iziziz 25,25,2 + - = + =. www.laisac.page.tl TRƯỜNGĐẠIHỌCVINH TRƯỜNGTHPTCHUYÊN ĐÁP ÁNĐỀK HẢOSÁTCHẤTLƯỢNGLỚP12LẦN2,NĂM2011 MÔN: TOÁN;Thờigianlàmbài:180phút Câu Đápán Điểm 1.(1,0điểm) a.Tậpxácđịnh: }.2{R =D b.Sựbiến thi n: *Chiềubiến thi n:Tacó 2,0 )2( 1 ' 2. Điểm 1.(1,0điểm) a.Tậpxácđịnh: }.2{R =D b.Sựbiến thi n: *Chiềubiến thi n:Tacó 2,0 )2( 1 ' 2 ¹ " > - = x x y . Suyrahàm số đồngbiếntrêncáckhoảng )2;(-¥ và );2(

Ngày đăng: 02/11/2014, 20:00

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w