1. Trang chủ
  2. » Giáo án - Bài giảng

P.pháp giải toán Sinh học 12-DTBD-1

17 450 14

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 17
Dung lượng 757,61 KB

Nội dung

     !"#"$%"&'(") *+,-"./,'0-1/&2$ 2 34&"052                 !"#$%&'( '   )*+,-.,/012( '  )* 3456'+"/02( '  )*,-. 7,8)90'' :"  (;<.=>&5?:@ 8   !"#$"%&  (<;.=>:1:@,/;,-)* ,-450/A 6 ,5BC5,5  D)E2,?$F(B-1G51H61IF7 DB-J$F K L 6' M 2 D(L 0 NM 2  GO  ,-,/O$FPB,-B-J,-  G5*,-Q:"/3/5E,O R.S1Q& ,-%5 O5E5?:@3/5E,O R.S L,-%5:7BTO&5?:@,O R$%,O RLJB -JO$U;GVW (,O R"XG$%&,O R(9G1 H,O R"XI$%0,O RH ≡ I ,/7,O RLJB G-JO$UR$R:83YR,- 5?:@/J3.ZJ3YR,-O5?:@  G[7-,/ :+,/ G5E(;<- \37:-($%75G"/ 7H$%7]I(9G^H9I9_(DH9GDI^96 1  89  ":/  ";  !:2  < +=/$'&2$./"-">?@ABC@ `  ?  5?1  .5     ,-:aXb?,O R"X .5ML,-:a?"S !70cO R/J,/,O R B--.5?,O R--"XML:! ."/?,O R--a&"XML   :   ,- R  R  9_ :--cO R/J1!-7a Y:!"X:3b,/ X0dML^Kd;- & ,5BC5,5 '&()*+!" DEFC6  ,O R*,/Kd:R0dMLO  !"  E+,-"0-1/&2$ 2>) .=>:[4565?,$,-B:@,O R ?/,/$,-;)*$,-e450/A,- .Y f:"/$F D)E2,?$F(B-103,-1H61IF7 DB-J$F ?  *G H ? D(L 0 NM 2 GO;,/O$F L;%5 ,O R$%6,O R.S GgJ-ah5//,?(i; D5---(i;(i;]5(i; D$5,(i;(i;$5-(i; Dj-(i;(i;"kJZ(i; C0/" +2&I-=/$'=.="-">) c/*,-B5,O R1& 3/ 6,O R-"/,?6L & M 9_W7,O R-97L & M:8.9 LJ P3a0; O5(i;b:S69_ W79 PX2,??2 0 9l2$E$ U8::Z 5m.&'5  G7l2U8.0$E$ ]5m.55/:."#$T R>n3BS5m:.,/(GG1(GI1(IGf75? ]-"/@ aO5(i;,/ J6J6)E$E$5f:A@aO5(i;,/ (oHbnJR:S5m.55-55f:A KL"MN2O"P221Q) &*,-. 6(  96' 6 596' 2 p596' q 5596' 6' 5 `JZ:U. 6596'(  ^6p596' 2 (  ^65596' q (  ^6596' 6' (  `!X6,/012(  `7,86,/0'':" `],86,/66':"  /0,1 0 ,5BC5,5  2$3"/4 5"+6+!"789%:29 9  a. ;<*=  <>?@*+!",A1/,/B+<C !57 *RMN&2$./"-"2S3.+> rT,/:@"S,/&  G(;<.2,?,-(1G1H1I  ;9(DGDIDH5/(9G1H9I;9&(D&H9&GD&I  GU7,-;9&(DH9&GDI96''s   W765?(;<;t&9(DH9GDI9K's E-T&U;-2S3.+V>) 6+6+012 G.;,-9_ 9_ CWN-$X.+K>) )E. 7,80'':" G.,-9_   L+ 9_ Y8N2&Z[,/#2S3.+>) )E 3456'+,-a&',- G.+,->9_  )E u02456'+,- )/5E+,-0129_ 2 ,5BC5,5 DEFE6 0D\EDF6 9  & V . DV !:2<. D  012 D  +&> KD CGG +<]> K9 DEG   'D*-$B+<C,/E+FGH+"+!"" 4!"I  5. O"P2"^MN&2$./"-"2_2$/:-"0/.) 6. O"P2"^`2_2$/:-&2$./"-t"0/.) G-;GVW (9G9_s(9sG H9I9_sH9sI s(DHDGDI96''s; s(DH9sGDI9K's; s(9sG9K'ssH sH9sI9K'ss(  2IJ$B+<C+!"4K+"H4 b. =_=-Q- ,-5?:@6,/( 6 1H 6 1G 6 1I 6 ,O5?:@&,/( & 1H & 1G & 1I & G-JO$U. ( 6 9G & ^G 6 9( & ^H 6 9I & ^I 6 9H &   ( 6 DG 6 9( & DG & 9( 6 D( & 9G 6 DG & 9(9G H 6 DI 6 9H & DI & 9H 6 DH & 9I 6 DI & 9H9I  LIJ$B+MN6"O+MNP(-,/4B< >?,AG$B+<C*+"+!"! 7. ^MN$-aZ("'<0/+>) • Hv,/7,O R'U0/(<; • 5E5?/J,O R"X5? $%&,O R"/8,? <"kJ.$O+3.&+&,O R K ,5BC5,5 A = T = A 1 +A 2 = T 1 +T 2 = %A.N = %T.N (nu)  A 1 = A –A 2 G = X = G 1 +G 2 = X 1 +X 2 = %G.N = %X.N (nu)  G 1 = G –G 2   W7,O RQ>,/&+& • G@Y6"/7,O R"X$%0,O RO7,O RQ> ,/06+07  J  8. ^MN$-aZ(" 3"0b+U M".A=/M=3">+@> Hv@,/7,O R.S a. 8N$-aZ(" 3"0b"0/!L"&2$./"-" • )*,-.5E,O R.SQ.5NM 2 "XwKx: G.,-9_6 b. 8N$-aZ(" 3"0b-c33-&2$./"-"0/!L"!:2< HQ,-g5E5?:@,?.6,O R.SPkJR[ \,O R.SQ,-/J"X,- 5*5?:@. - a&,- RR.6,O R - a0,- RR.&,- R - y - a,- RR.,O R  )/(<;.5?:@O7,O RS5?:@  & 2(&,d""RMN$-aZ("/_"0b2 "0/=e"fJ"32 ) 6D& QR /0(+S= V/6tI:SU7,-;8 H-B/2'z'(  $H-B/'1'''K655 <AT= G.c - 9 &  012(  ;9  #  210 & 90''' $G.c9'1'''K6559'1'''K6{6' q 9K6''(  ;9  #  210 & 9  #210 K6''{& 90''' V/&tI:SB/-8 H-.U7;,/&6l' l ,5BC5,5 DE DEFC7DEFC6DEFC7DEFC6 @D,O R @D @DgE @D&  @DFgEDEAE  $H-.6&l 3 <AT= G.c - 9 &  012(  9 & &6l' 012(  90lq&(  $G.9 &'  ;9&'9&K&'c - 9 &  012(  92&z2(  V/0tI:S 7,8-8 H-.U7;&2'' $H-.l' 3 <AT= G.)9;0'':"9&2''0''9q&'''':" $G.9 &'  ;9&'9&'l'96&'')9;0'':"90l'''':" V/2tH-B/0''K1l(  1T7,?G"X,? ,/&q&G!7,8 ,?- <AT= G-:$/.c - 90''K1l(  ;9  #  210 & 96qlz&(D&H96qlz &GD&I96qlz6 P/G|I9&q&& &GD&I96qlz6 G6"/&.T  GI9&q&&  HT:8G9Kqz1I90'l PkJ (9G9Kqz  H9I90'l V/KtH-.}l 3H-/J.(9 0 6 HG!7,8,?- <AT= .9}l;9&'9&'}l96}&'&(D&H96}&'6 G-:$/.(9 0 6 H&  GR&"/6!:8(9&2'^H9q&' PkJ (9G9&2' H9I9q&' V/lt)E-.G9601qsG![,T,?- <AT= q ,5BC5,5  G-;GVWGDI9K's )/G9601qs9I9K's601qs90l10s PkJ (9G9601qs H9I90l10s V/qtG![,Ts,?-8  $% # + + 9 q 6 $GU&,?$%&zs/ (9 0 6 H <AT= . $% # + + 9 q 6  ⇔ q 6 & & = % # ⇔ 62(&H9'6<(9G^H9I G-;GVW (DH9K's& 62(&H9'6 G6"/&.T (DH9K's& H:8(9l1&Ks^H9201qKs PkJ (9G9l1&Ks H9I9201qKs $G-;GVWU&,? (DH+GDIb$%K's: $/$RU&,?$%&zs1"kJ:J,/U&g,? G\&8 {G86 (DG9&zs&(9&zs9_(962s9G )/(DH9K's9_H9K's6Ks90Ks PkJ1(9G962s H9I90Ks {G8&HDI9&zs8Y86 (9 0 6 H10(9H6  5/(DH9K's& R6"/&35:8(D0(9K's (9K'st296&1Ks  H9K's6&1Ks90q1Ks  PkJ1(9G96&1Ks H9I90q1Ks z ,5BC5,5  V/zt)E-B/'1K6p5"/.,O RB,/0}'',O R)?5E.(96K'1 5?:7BT.I90'' I:S7,8"/[,T,?- $I:S7,8"/[,T,?5? <AT= G.c - 9'1K6p59K6''(   ⇒ ;9  #  210 & 90''' ⇒ &(D&H9;90'''6 P/7c`BL9&(D0H90}''& &(D&H90'''6 G6"/&.T&(D0H90}''& H:8 (9l''^H9}'' G[,T,?(9G9 s6''{  # 9&'s^H9I9 s6''{  % 90's PkJ (9G9l''9&'s H9I9}''90's $G.765?9 &  96K'' G-:$/.( 6 9G & 96K'G-;GVW )/ (9( 6 D( & 9l'' ⇒ ( & 9l''6K'92K'9G 6 P/ H 6 9I & 90''G-;GVW ( 6 DG 6 DH 6 DI 6 9 &  96K'' ⇒ I 6 96K''6K'D2K'D0''9l'' G[,T,?f5*5? ( 6 9G & 9 s6''{ & 6  # 96's G 6 9( & 9 s6''{ & 6   90's H 6 9I & 9 s6''{ & 6  % 9&'s } ,5BC5,5  I 6 9H & 9 s6''{ & 6  $ 92's PkJ ( 6 9G & 96K'96's G 6 9( & 92K'90's H 6 9I & 90''9&'s I 6 9H & 9l''92's V/})E-. 7,8,/} × 5 10  :"G:..(96'K' ,- 6G357,8,-,?G1H1I- &B/-$%$O µ 5 0W7,8$,-O(i;]5(i; 2H-.O.Z5m.:85E-45$O5~ B/-:.fB?=>$k6VR%B/$3 65,/0 o A  <AT= *<Y"/JO$U.(9G96'K',- H-. 7,8,/} × 5 10 :"PkJU7,--,/ 5 9 10 300 × 90''',- PkJ H9I9 3.000 2 −6'K'92K',- EB/-=>,/ 6 µ 5 ×  3.000 2  × 012 ×  4 10 − 9'1K6 µ 5 CW7,8$,-O5(i;,/ 3.000 2 96K''$,- YW7,855/-O.Z5m.:8,/ 6' ,5BC5,5 [...]... 498 axit amin Vậy chiều dài của phân tử protein bậc 1 được tổng hợp tư gen trên là: o × A 498 3 = 1494 Bài 10 Khối lượng phân tử của 5 phân tử protein đồng loại đang thực hiện chức năng sinh học bằng 229.900 đvC (mỗi phân tử protein là một chuỗi pôlipeptit) 1 Tính chiều dài cấu trúc bậc 1 của phân tử protein Biết chiều dài trung bình của o A mỗi axit amin là 3 2 Chiều . 3 <AT= G.)9;0'':"9&2''0''9q&'''':" $G.9 &'  ;9&'9&'l'96&'')9;0'':"90l'''':" V/2tH-B/0''K1l(  1T7,?G"X,?. /0,0U V/6H-B/'12'z p5 . 7,8,/ (0l'''':" Vq&'''':" K2'''':" <2l'''':" V/&)E-. R)?5E.(96K'1 5?:7BT.I90'' I:S7,8"/[,T,?- $I:S7,8"/[,T,?5? <AT= G.c - 9'1K 6p5 9K6''(   ⇒ ;9  #  210 & 90''' ⇒ &(D&H9;90'''6 P/ 7c`BL9&(D0H90}''& &(D&H90'''6 G6"/&.T&(D0H90}''& H:8

Ngày đăng: 02/11/2014, 12:00

TỪ KHÓA LIÊN QUAN

w