1. Trang chủ
  2. » Giáo án - Bài giảng

on he phuong trinh vip 4.thanhduy

2 119 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 2
Dung lượng 31,38 KB

Nội dung

Nguyễn Phú Khánh – Đà Lạt Bài tập : Chứng minh rằng hệ ph ương trình 3 3 1 3 (1) 1 3 (2) x y y x          có đúng 3 nghiệm (1) (2) ta được 3 3 2 2 2 2 3( ) ( )( ) 3( ) ( )( 3) 0x y y x x y x xy y x y x y x xy y                2 2 3 0 x y x xy y           Trường hợp 1 : Vì 2 2 2 2 2 2 2 3 3 3 3 ( ) 3 0 4 4 2 4 y y y y x xy y x xy x             nên 2 2 3 0x xy y    vô nghiệm Trường hợp 2 : x y thay vào phương trình (1) của hệ ta được 3 3 1 0 (3)x x   Đặt 3 2 1 ( ) 3 1 '( ) 3 3 ; '( ) 0 1 x f x x x f x x f x x                Vì ( 1). (1) 3 0f f    nên phương trình (3) có 3 nghiệm phân biệt . Do đó hệ đ ã có có đúng 3 nghiệm. Cách khác: 3 ( ) 3 1f x x x   là hàm đa thức nên liên tục trên  ; do đó 3 ( ) 3 1f x x x   liên tục trên [ 2;2] và ( 2). ( 1) 3 0; ( 1). (1) 3 0; (1). (2) 3 0f f f f f f            do đó phương trình ( ) 0f x  có ít nhất 1 nghiệm trên mỗi khoảng ( 2; 1),( 1;1),(1;2)   . Vậy phương trình (3) có 3 nghiệm phân biệt . Do đó hệ đ ã có có đúng 3 nghiệm. Bài tập 1: Cho hệ phương trình : 1 1 x y m y x m            1. Giải hệ với 3m  . 2. Định các giá trị m để hệ có nghiệm Bài tập 2: Định m để các hệ ph ương trình sau có nghiệm 1. x y e y m e x m          . Bài tập 3 : Giải các hệ ph ương trình : 1. sin sin cos2 3 sin 1 0 x y x y x y            . Bài tập 4 : Giải các hệ ph ương trình : 1. 2 2 2 2 4 2 5 x y x x y y           . Nguyễn Phú Khánh – Đà Lạt 2. 2 2 log (3 1) log (3 1) y x x y          3. 2 2 1 1 1 3 x y y x            .    2 2 3 0 x y x xy y           Trường hợp 1 : Vì 2 2 2 2 2 2 2 3 3 3 3 ( ) 3 0 4 4 2 4 y y y y x xy y x xy x             nên 2 2 3 0x xy y    vô nghiệm Trường hợp. trình : 1. sin sin cos2 3 sin 1 0 x y x y x y            . Bài tập 4 : Giải các hệ ph ương trình : 1. 2 2 2 2 4 2 5 x y x x y y           . Nguyễn Phú Khánh – Đà Lạt 2. 2 2 log

Ngày đăng: 01/11/2014, 06:00

w