1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Các bài toán hay về tổng ba góc của một tam giác

14 8,1K 5

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 14
Dung lượng 406 KB

Nội dung

Chứng minh rằng MN’ và M’N cắt nhau tại trung điểm O của đoạn thẳng AB.. TRƯỜNG HỢP BẰNG NHAU THỨ BA CỦA TAM GIÁC GÓC-CẠNH-GÓC G-C-G Bài 1: Cho tam giác ABC, D là trung điểm của cạnh A

Trang 1

TRƯỜNG HỢP BẰNG NHAU THỨ NHẤT CỦA TAM GIÁC

CANH - CẠNH - CẠNH (C - C - C )

Bài 1 :

Tam giác ABC có AB = AC Gọi M là một điểm nằmảtong tam giác sao cho MB = MC; N

là trung điểm của cạnh BC Chứng minh :

a AM là tia phân giác của góc BAC;

b Ba điểm A, M, N thẳng hàng

c MN là đường trung trực của đoạn BC

Bài 2 : Cho tam giác ABC = A’B’C’ Gọi M là trung điểm của BC, M’ là trung điểm của B’C’ Biết AM = A’M’ Chứng minh :

a Tam giác AMB = A’M’B’

b Góc AMC = A’M’C’

Bài 3 : Cho tam gíc ABC Vẽ cung tròn tâm C bán kính bằng AB, cung tròn tâm B bán kính bằng AC Hai cung tròn trên cắt nhau ở D (A và D thuộc hai nửa mặt phẳng đối nhau bờ BC).Chứng minh CD//AB và BD//AC

Bài 4 : Cho góc nhọn xOy Trên Ox, Oy lấy tương ứng hai điểm B và C sao cho OA = OB

Vẽ đường tròn tâm A và tâm B có cùng bán kính sao cho chúng cắt nhau tại hai điểm M, N nằm trong góc xOy Chứng minh:

a Tam giác OMA = OMB và ONA = ONB;

b Ba điểm O, M, N thẳng hàng

c Tam giác AMN = BMN;

d MN là tia phân giác của góc AMB

Bài 5: Cho tam giác ABC CÓ AB = AC Gọi H là trung điểm của cạnh BC

a Chứng minh AH là tia phân giác của góc BAC và AH vuông góc với BC

b Trên tia đối của tia HA lấy điểm K sao cho HK = HA Chứng minh rằng CK//AB

Bài 6 : Cho tam giác ABC có AB = AC Gọi D và E là hai điểm trên cạnh BC sao cho BD=

DE = EC Biết AD = AE

a Chứng minh góc EAB = DAC

b Gọi M là trung điểm của BC Chứng minh AM là tia phân giác của góc DAE;

c Giả sử góc DAE = 60độ Có nhận xét gì về các góc của tam giác AED?

TRƯỜNG HỢP BẰNG NHAU THỨ HAI CỦA TAM GIÁC

CẠNH – GÓC - CẠNH (C – G – C)

Bài 1 : Cho tam giác ABC Gọi M, N lần lượt là trung điểm của AC và AB Trên tia đối của các tia MB và NC lấy tương ứng hai điểm D và E sao cho MD = MB và NE = NC Chứng minh :

a AD = AE;

b Ba điểm A, E, D thẳng hàng

Trang 2

Bài 2: Cho tam giác ABC có góc a = 90độ và BC = 2AB, E là trung điểm của BC Tia phân giác của góc B cắt cạnh AC ở D

a Chứng minh DB là tia phân giác của góc ADE;

b Chứng minh BD = DC ;

c Tính góc B và góc C của tam giác ABC

Bài 3 : Cho góc nhọn xOy và tia phân giác Oz của góc đó Trên tia Ox lấy điểm A, trên tia

Oy lấy điểm B sao cho OA = OB Gọi C là một điểm trên tia Oz.Chứng minh:

a AC = BC và góc xAC = yBC ;

b AB vuông góc với Oz

Bài 4 : Cho tam giác ABC có góc A = 90độ Gọi M là trung điểm của cạnh AC, trên tia BM lấy điểm N sao cho M là trung điểm của đoạn BN Chứng minh:

a CN vuông góc với AC và CN = AB;

b AN = BC và AN song song với BC

Bài 5: Cho tam giác ABC góc A = 90độ và AB < AC.Trên cạnh AC lấy điểm D sao cho

AD = AB Trên tia đối của tia AB lấy điểm E sao cho AE = AC

a Chứng minh DE = BC;

b Chứng minh DE vuông góc với BC;

c Biết 4B = 5C Tính góc AED

Bài 6: Cho đoạn thẳng AB và trung điểm O của đoạn thẳng đó Trên hai nửa mặt phẳng đối nhau bờ AB, kẻ hai tia Ax, By sao cho góc BAx = Aby, rồi lấy trên Ax hai điểm C và E ( E nằm giữa A và C ), trên By hai điểm D và F(F nằm giữa B và D) sao cho AC = BD, AE = BF

Chứng minh:

a OC = OD, OE = OF;

b Ba điểm C, O, D thẳng hàng, ba điểm E, O, F thẳng hàng;

c ED = CF

Bài 7: Cho đoạn thẳng AB và điểm C nằm giữa hai điểm A và B nhưng không trùng với trung điểm của đoạn thẳng AB Trên hai nửa mặt phẳng đối nhau bờ AB kẻ hai tia Ax, By cùng vuông góc với AB Trên tia Ax lấy hai điểm M, M’, trên tia By lấy hai điểm N, N’ sao cho AM = BC, BN = AC, AM’ = AC, BN’= BC

a Chứng minh MC = NC, AN = BM’, AN’ =BM

b Chứng minh AN//BM’ và AN’//BM;

c Chứng minh rằng MN’ và M’N cắt nhau tại trung điểm O của đoạn thẳng AB

Bài 8: Cho tam giác ABC có Â<90độ Trên nửa mặt phẳng bờ AB không chứa điểm C, vẽ tia Ax, trên đó lấy điểm D sao cho AD = AB Trên nửa mặt phẳng bờ AC không chứa điểm

B, vẽ tia Ay, trên đó lấy điểm E sao cho AE = AC

a Chứng minh BE = CD;

b Chứng minh BE vuông góc với CD;

c Các đường thẳng AC và ED có thể vuông góc với nhau được không? Các kết quả trên còn đúng hay không nếu Â>90độ?

Bài 9: Cho tam giác ABC, kẻ AH vuông góc với BC(H  BC).Gọi M là trung điểm của cạnh BC Biết AH, AM chia góc ở đỉnh A của tam giác thành ba góc bằng nhau Tính các góc của tam giác ABC

Trang 3

Bài 10: Cho tam giác ABC có Â = 90độ Tia phân giác của góc B cắt cạnh AC tại điểm D Trên cạnh BC lấy điiểm H sao cho BH = BA

a Chứng minh DH vuông góc với BC;

b Biết góc ADH =110độ , tính góc ABD

TRƯỜNG HỢP BẰNG NHAU THỨ BA CỦA TAM GIÁC

GÓC-CẠNH-GÓC (G-C-G)

Bài 1: Cho tam giác ABC, D là trung điểm của cạnh AB, Đường thẳng kẻ qua D và song sonh vơí cạnh BC cắt AC ở E, đường thẳng kể qua E song song với cạnh AB cắt BC ở F Chứng minh rằng:

a AD = EF;

b AE = EC và BF = FC;

c DE = 1

2BC và EF = 1

2AB

Bài 2: Cho tam giác ABC có Â <9Ođộ, AB = AC Kẻ CE vuông góc với AC (D AC) và

CE vuông góc với AB (E  AB) Gọi o là giao điểm của BD và CE

Chưng minh rằng :

a BD = CE;

b OE = OD và OB = OC;

c OA là tia phân giác của góc BAC

Bài 3: Cho tam giác ABC có góc B = C Gọi I là trung điểm của cạnh BC Trên canh AB láy điểm D, trên tia DI lấy điểm E sao cho I là trung điểm của DE

Chứng minh rằng:

a BD = CE;

b CB là tia phân giác của góc ACE

Bài 4: Cho tam giác ABC có Â = 90độ và AB = AC Qua A kẻ đường thẳng xy (B, C nằm cùng phía đối với xy).Kẻ BD và CE vuông góc với xy ( D, E  xy)

a Chứng minh rằng DE = BD + CE;

b Kết quả ở câu a thay đổi thế nào nếu B, C nằm khác phía đối với xy?

Bài 5: cho tam giác ABC có Â = 90 độ và AB=AC Trên các cạnh AB,AC tương ứng 2 điểm

D và E sao cho AD=AE Từ A và D kẻ đường vuông góc với BE cắt BC tại M và N Tia ND cắt tia CA ở I Chứng minh:

a A là trung điểm của CI;

b CM=MN

Bài 6: Cho tam giác ABC có Â = 90 độ, M là trung điểm cua cạnh BC Trên AM lấy điểm

N sao cho M là trung điểm của AN Chứng minh:

a CN = AB và CN // AB

b AM = 1

2BC

Bài 7: Cho tam giác ABC Trên nửa mặt phẳng bờ AB không chứa điểm C và AFAB và

AF = AB , trên nửa mặt phẳng bờ AC không chúa điểm B vẽ AH  AC và AH = AC Gọi

Trang 4

D là trung điểm của cạnh BC, I là một điểm trên tia đối của tia DA sao cho DI = DA Chứng minh:

a AI = FH;

b DA vuông góc với FH

Bài 8: Cho tam giác ABC, D là trung điểm cạnh AB, E là trung điểm cạnh AC Vẽ điểm F sao cho E là trung điểm của DF, Chứng minh rằng:

a BD = CF;

b DE // BC và DE = 1

2BC

Bài 9:Cho tam giác ABC, M là trung điểm của BC, I là trung điểm của AM Tia CI cắt cạnh

AB ở D Chứng minh rằng:

a AD = 1

2BD;

b ID = 1

4CD

Bài 10: Cho tam giác ABC có AB = AC Gọi M là trung điểm của AB Vẽ điểm D sao cho B

là trung điểm của AD Chưng minh CD = 2CM

Bài 11: Cho tam giác ABC, hai đường cao BD, CE Gọi M,N lần lượt là trung điểm của BC,

DE Chưng minh rằng: MN vuông góc với DE

Bài: Cho tam giác ABC có Â < 90độ Trên nửa mặt phẳng bờ AB có chứa điểm C vẽ AD 

AB avf AD = AB Trên nửa mặt phẳng bờ AC có chứa điểm B vẽ AE AC và AE = AC Kẻ

AH ED ( H  ED) Chứng minh rằng đường thẳng AH đi qua trung điểm M của cạnh BC

TAM GIÁC CÂN

Bài 1:

a Tính góc ở đáy của một tam giác cân biết góc ở đỉnh bằng 50độ , bằng ađộ

b Tính góc ở đỉnh của một tam giác can biết góc ở đáy bằng 50độ, bằng a độ

Bài 2: Cho tam giác ABC cân tại A cá Â = 100độ Lấy điểm M thuộc cạnh AB, điểm N thuộc cạnh AC sao cho AM = AN C Chưng minh rằng MN // BC

Bài 3: Cho tam giác ABC cân tại A Gọi M là trung điểm cua AC , N là trung điểm của AB Chứng minh rằng BM = CN

Bài 4: Cho tam giác ABC cân tại A Lấy điểm H thuộc cạnh AC, điểm K thuộc cạnh AB sao cho AH = AK Gọi O là giao điểm của BH và CK Chứng minh rằng tam giác OBC là tam giác cân

Bài 5: Vẽ lại hình 59 vào vở rồi đặt bài toán vẽ tam giác để có hình 59

Bài 6 : Cho tam giác ABC cân tại A Trên tia dối của tia BC lấy điểm D, trên tia đối của tia

CB lấy điểm E sao cho BD = CE Chứng minh rằng tam giác ADE là tam giác cân

Bài 7: Cho tam giác ABC Tia phân giác của góc B cắt AC ở D Trên tia đối của tia BA lấy

E sao cho BE = BC Chưng minh rằng BD // EC

Bài 8: Tính số đo góc của tam giác ACD trên hình 60

Bài 9 : Cho tam giác ABC cân tại A Vẽ điểm D sao cho A là trung điểm của BD Tính số đo góc BCD

Trang 5

Bài 10: Cho tam giác ABC cân tại A có cạnh bên bằng 3cm Gọi D là một điểm thuộc đáy

BC Qua D, kẻ các đường thẳng song song với các cạnh bên, chúng cắt AB và AC theo thứ

tự F và E Tính tổng DE + DF

Bài 11: Cho tam giác đều ABC Lấy các điểm D, E, F theo thứ tự thuộc các cạnh AB, BC,

CA sao cho AD = BE = CF Chứng minh rằng tam giác DÈ là tam giác đều

Bài tam giác ABC Các tia phân giác của các góc B và C cắt nhau ở I Qua I kẻ đưòng thẳng song song vơíư BC Gọi giao điểm của đường thẳng này với AB, AC theo thứ tự là D E Chứng minh rằng DE = BD + CE

Bài 12: Cho đường tròn tâm O đường kính AB Gọi M là một điểm nằm trên đường tròn, tính số đo góc AMB

Bài 13: Đặt đề toán theo hình 61 Sau đó vẽ lại hình theo đề toán rồi đo góc DAE

Bài 14: Chứng minh rằng tam giác ABC vẽ trên giấy kẻ ô vuông ( h.62) là tam giác nhọn

ĐỊNH LÝ PY-TA-GO

Bài 1: Tính cạnh góc vuông của một tam giác vuông biết cạnh huyền bằng 13cm, cạnh góc vuông kia bằng 12cm

Bài 2: Cho tam giác nhọn ABC Kẻ AH vuông góc với BC Tính chu vi tam giác ABC biết

AC = 20cm, AH = 12cm, BH = 5cm

Bài 3: Tính độ dài các đoạn thẳng AB, CD, DA trên hình 63

Bài 4: Màn hình của một máy thu hình có dạng hình chữ nhật, chiều rộng 12inh-sơ, đường chéo 20inh-sơ Tính chiều dài

Bài 5: Tính đường chéo của một mặt bàn hình chữ nhật có chiều dài 10dm, chiều rộng 5dm Bài 6:Hai đoạn thẳng AC, BD vuông góc với nhau và cắt nhau tại trung điểm của mỗi đoạn thẳng Tính các độ dài AB, BC, CD, DA biết AC = 12cm, BD = 16cm

Bài 7: Tính độ dài các cạnh góc vuông của một tam giác vuông cân có cạnh huyền bằng:

a 2cm

b 2cm

Bài 8 : Tính cạng đáy BC của tam giác cân ABC trên các hình 64, 65

a Trên hình 64: AH = 7cm, HC = 2cm

b Trên hình 65 : AH = 4cm, HC = 1cm

Bài 9: Bạn An đi từ nhà mình ( A ) qua nhà bạn Bảo ( B) rồi đến nhà bạn Châu ( C) Lúc về,

An qua nhà bạn Dũng ( D) rồi trở về nhà mình ( h.66) So sánh quãng đường lúc về nhà của

An, quãng đường nào dài hơn

Bài 10: Cho các số : 5 ; 8 ; 9 ; 12 ; 13 ; 15 ; 17 Hãy chọn ra các bộ ba số có thể là độ dài ba cạnh của một tam giác vuông

Chứng minh rằng tam giác ABC vẽ trên giáy kẻ ô vuông (h.67) là tam giác vuông cân

Bài 11: Cho tam giác ABC, Â = 90độ Biết AB + AC = 49cm, AB – AC = 7CM

Tính cạnh BC

Bài 12: Cho tam giác cân ABC, AB = AC = 17 cm.Kẻ BD  AC Tính cạnh đáy BC, biết

BD = 15 cm

Trang 6

Bài 13: Tính cạnh đáy BC của tam giác ABC, biết rằng đương vuông góc BH từ B xuống cạnh AC chia AC thành hai phần : AH = 8cm, HC = 3cm

Bìa 14: Một tam giác vuông có cạnh huyền là 102cm, các cạnh góc vuông tỉ lệ với 8 : 15 Tính các cạnh của tam giác vuông đó

Bìa 15: Cho tam giác ABC Biết BC = 52cm, AB = 20cm, AC = 48cm

a A là trung điểm của DE;

b Góc DHE = 90độ

Bài 15: Cho tam giác ABC có Â = 90độ, AB = 8cm, BC = 17cm Trên nửa mặt phẳng bờ

AC không chứa điểm B, vẽ tia CD  AC và CD = 36cm Tính tổng độ dài các đoạn thẳng

AB + BC + CD + DA

Bài 16 : Từ điểm O tuỳ ý trong tam giác ABC, kẻ OA1, OB1, OC1 lần lượt vuông góc với các cạnh BC, CA, AB Chứng minh rằng:

CÁC TRƯỜNG HỢP BẰNG NHAU CỦA TAM GIÁC VUÔNG

Bài 1: Cho tam giác ABC cân ở A Trên tia đối của tia BC lấy điểm D, trên tia đối của tia

CB lấy điểm E sao cho bd = CE Kẻ BH  AD ( H  AD ), kẻ CK  AE ( K  AE) Chứng minh rằng :

a BH = CK

b Tam giác AHB = AKC

c BC song song với HK

Bài 2: Cho tam giác ABC cân ở A , Â = 90độ Kẻ BD  AC ( D  AC ), kẻ CE AB ( E 

AB ) Gọi I là giao điểm của BD và CE Chứng minh rằng :

a AD = AE;

b AI là tia phân giác của góc BAC

Bài 3: Cho tam giác ABC vuông ở A Từ A kẻ AH  BC Trên cạnh BC lấy điểm E sao cho

BE = BA Kẻ EK  AC ( K  AC ).Chứng minh rằng AK = AH

Bài 4 : Cho tam giác ABC vuông cân ở A, M là trung điểm của BC, điểm E nằm giữa M và

C Kẻ BH, CK vuông góc với AE ( H và K thuộc đường thẳng AE) Chứng minh rằng :

a BH = AK

b Tam giác MBH = MAK

c Tam giác MHK là tam giác vuông cân

Bài 5: Cho tam giác ABC cân tại A Kẻ AH vuông góc với BC ( H  BC) Chứng minh rằng

a HB = HC

b Góc BAH = CAH

Bài 6: Cho tam giác vuông ABC và DEF có Â = D = 90độ, AC – DF Hãy bổ sung thêm một điều kiện bằng nhau ( về cạnh hay về góc) để tam giác ABC = DEF

Bài 7: Cho tam giác ABC cân tại A ( Â < 90độ) Vẽ BH AC ( H  AC), CK  AB ( K 

AB)

a Chứng minh rằng : AH = AK

b Gọi I là giao điểm của BH và CK Chứng minh rằng AI là tia phân giác của góc A

Trang 7

Bài 8 : Tìm các tam giác bằng nhau trên hình 148:

CHƯƠNG III

QUAN HỆ GIỮA CÁC YẾU TỐ TRONG TAM GIÁC

CÁC ĐƯỜNG ĐỒNG QUY TRONG TAM GIÁC

QUAN HỆ GIỮA CÁC GÓC VÀ CẠNH ĐỐI DIỆN TRONG MỘT TAM GIÁC BT1: Chứng minh định lý : “ Trong một tam giác, cạnh đối diện với góc lớn hơn là cạnh lớn hơn”

BT2 : Cho tam giác ABC có AB<AC,phân giác AD Chứng minh rằng :

a ABC > ADC

b BD < DC

BT3 : Trong một tam giác đối diện với cạnh nhỏ nhất là loại góc nào ( trong các góc nhọn, vuông, tù )? Tại sao?

BT4 : Cho tam giác ABC, có B > 900 Gọi D là một điểm trên tia đối của tia CB Chứng minh rằng AB < AC < AD

BT5 : Cho tam giác ABC có góc A là góc tù Gọi B’, C’ theo thứ tự là hai điểm trên hai cạnh

AB, AC của tam giác ABC ( B’, C’ không trùng với các đỉnh của tam giác)

So sánh B’C’ và BC

BT6 : Trên đáy BC của tam giác cân ABC lấy hai điểm D và E sao cho BD = DE = EC Chứng minh rằng BAD = EAC < DAE

BT7: Cho tam giác ABC vuông ở A Tia phân giác của góc B cắt cạnh AC ở D So sánh AD

và DC

BT8: Cho tam giác cân ABC Chứng minh rằng nếu đáy BC lớn hơn, bằng hay nhỏ hơn cạnh bên của tam giác đó thì góc A sẽ lớn hơn, bằng hay nhỏ hơn 600

BT9: Cho tam giác BAC, AB < AC Gọi M là trung điểm của cạnh BC

a Chứng minh MAB > MAC, từ đó suy ra tia phân giác của góc BAC cắt cạnh BC tại một điểm nằm giữa B và M;

b Từ M vẽ tia Mx sao cho MA là tia phân giác của góc BMx Gọi D là giao điểm của

Mx với AC Chứng minh rằng MB > MD

BT10: Cho tam giác ABC có 900 < B < 1350, C < 450 Kẻ AD vuông góc với BC Chứng minh rằng : BD < AD < CD

BT11: Cho tam giác cân ABC, AB = AC Trên cạnh AB lấy điẻm E, trên tia đối của tia CA lấy điểm D sao cho BE = CD Từ C kẻ Cx // DE, từ E kẻ Ey // CD Hai tia Cx và Ey cắt nhau tại F So sánh BC và CF

BT12: Cho tam giác vuông ABC, Â = 900 Chứng minh rằng C = 300khi và chỉ khi AB =

1

2BC

QUAN HỆ GIỮA ĐƯỜNG VUÔNG GÓC VÀ ĐƯỜNG XIÊN,

ĐƯỜNG XIÊN VÀ HÌNH CHIẾU

Trang 8

BT1: Cho tam giác ABC vuông ở A Trên cạnh AB và AC lấy tương ứng hai điểm D và E ( D, E không trùng với các đỉnh cuả tam giác ABC)

Chứng minh rằng: DE < BE < BC

BT2: Cho tam giác nhọn ABC , AB < AC Kẻ AH vuông góc với BC ( H  BC).Gọi M là một điểm nằm giữa A và H, tia BM cắt AC ở D

Chứng minh rằng:

a BM < CM

b DM< DH

BT3: Từ trung điểm K cạnh BC của tam giác vuông ABC vuông tại , kẻ đường thẳng vuông góc với AK, đường thẳng này cắt các đường thẳng AB và AC lần lượt ở D và E Gọi I là trung điểm của DE,

a Chứng minh rằng AI  BC

b Có thể nói DE nhỏ hơn BC được không? Vì sao ?

BT4: Cho tam giác ABC vuông ở A, M là trung điểm của AC Gọi D và E lần lượt là hình chiếu của A và C xuống đường thẳng BM

So sánh tổng BD + BE với AB

BT5: Cho tam giác ABC, kẻ AH  BC, BK  AC, Biết rằng AH không nhỏ hơn BC, BK không nhỏ hơn AC, Tìm số đo các góc của tam giác ABC

BT6: Cho D là một điểm nằm trong tam giác ABC Chứng minh rằng nếu AD = AB thì AB

< AC,

BT7: Cho tam giác ABC có AB = 13cm, BC = 14cm, AC = 15cm và diện tích của tam giác bằng 84cm2 Vẽ cung tròn tam A bán kính 14cm Chứng tỏ rằng cung tròn này cắt đường thẳng BC tại hai điểm mà một điểm nằm giữa B và C, điểm còn lại nằm ngoài đoạn thẳng BC,

BT8: Cho tam giác vuông ABC, C = 900, kẻ CH  AB Trên các cạnh AB và AC lấy tương ứng hai điểm M và N SAO CHO BM = BC và CN = CH

Chứng minh rằng:

a MN  AC

b AC + BC < AB + CH

QUAN HỆ GIỮA BA CẠNH CỦA MỘT TAM GIÁC BẤT ĐẲNG THỨC TAM GIÁC

BT1: Cho điểm M nằm trong tam giác ABC Chứng minh rằng: AM + BM < BC + AC BT2: Cho O là một điểm nằm trong tam giác ABC Chứng minh rằng :

2

< OA + OB + OC < AB +BC + CA

BT3: Tính chu vi của tam giác cân ABC, biết :

a AB = 8cm, AC = 13cm

b AB = 5cm, AC = 12cm

BT4: Cho tam giác ABC, biết AB = 3cm, AC = 7cm Tính độ dài cạnh BC, biết độ dài này là một số nguyên ( cm ) và là một số nguyên tố Tam giác ABC là tam giác gì?

BT5: Cho tam giác ABC , M là trung điểm cạnh BC Chứng minh rằng:

Trang 9

< AM <

2

BT6: Cho tam giác ABC, điểm D nằm giữa B và C Chứng minh rằng :

2

< AD <

2

BT7: Ba thành phố A, B, C trên bản đồ là ba đỉnh của một tam giác, trong đó AB = 35km,

BC = 85km

a Nếu đặt ở A máy phát sóng có bán kính hoạt động bằng 50km thì ở C có nhận được tín hiệu không? Vì sao?

b Cũng hỏi như trên nếu đặt ở A máy phát sóng có bán kính hoạt động bằng 120km? Cho tam giác ABC, điểm O nằm giữa B và C Trên tia đối của tia OA lấy điểm D Gọi M, N lần lượt là trung điểm của AB, CD

Chứng minh MN 

2

TÍNH CHẤT BA ĐƯỜNG TRUNG TUYẾN CỦA TAM GIÁC

BT1: Cho G là trong tam của tam giác đều ABC Chứng minh rằng : GA = GB =GC

BT2: Gọi G là trọng tam của tam giác ABC Trên tia AG lấy điểm D sao cho G là trung điểm của AD

a So sánh các cạnh của tam giác BGD với các trung tuyến của tam giác ABC

b So sánh các trung tuyến của tam giác BGD với các cạnh của tam giác ABC

BT3: Chứng minh rằng trong một tam giác tổng độ dài ba đường trung tuyến lớn hơn 3

4 chu

vi và nhỏ hơn chu vi của tam giác đó

BT4: Cho tam giác ABC vuông tai A, trung tuyến AM Chứng minh rằng : AM = 1

2BC BT5: Tam giác ABC có trung tuyến AM bằng nửa cạnh BC Chứng minh rằng tam giác ABC vuông tai A

BT6: Cho hai đường thẳng x’x và y’y cắt nhau tại O Trên tia x’x lấy ba điểm A, B, C sao cho OA = AB = BC, tren y’y lấy ba điểm E, M, N sao cho OE = OM =MN Chứng minh rằng ba đường thẳng AE, BN, và CM cùng đi qua một điểm

BT7: Cho tam giác ABC, ba đường trung tuyến AD, BE, CF cắt nahu tại O Chứng minh rằng 6 tam giác OAE, OEC, OCD, ODB, OBF,OFA có diện tích bằng nhau

BT8: Cho tam giác ABC vuông ở A, có AB = 5cm, BC = 13cm Ba đường trung tuyến AM,

BN, CE cắt nhau tại O

a Tính AM, BN, CE

b Tính diện tích tam giác BOC

BT9: Cho tam giác ABC, ba đường trung tuyến AD, BE, CF Từ E kẻ đường thẳng song song với AD cắt tia ED tại I

a Chứng minh IC // BE

b Chứng minh rằng néu AD  BE thì tam giác ICF là tam giác vuông

c So sánh các cạnh của tam giác ICF với các trung tuyến của tam giác ABC

Trang 10

TÍNH CHẤT TIA PHÂN GIÁC CỦA MỘT GÓC.

TÍNH CHẤT BA ĐƯỜNG PHÂN GIÁC CỦA TAM GIÁC

BT1 Cho ABC Chứng minh rằng hai tia phân giác của hai góc ngoài ở đỉnh B và C và tia phân giác trong của góc A cắt nhau tại một điểm

BT2 Chứng minh rằng : tam giác ABC có trung tuyến AM đồng thời là phân giác thì tam giác đó là một tam giác cân

BT3 Cho ABC cân tại A Gọi G là trọng tâm, O lad giao điểm ba tia phân giác trong của các góc A,B,C, I là giao điểm hai tia phân giác góc ngoài ở đỉnh B và C Chứng minh rằng bốn điểm A,G.O,I thẳng hàng

BT4 Cho tam giác ABC, A=120,AA’, BB’,CC’ theo thứ tự là tia phân giác của các góc A,B,C Chứng minh rằng A’B’ vuông góc A’C’

BT5 Cho ABC, A=90 Trên AC lấy điêm C sao cho góc ABC=3ABD, trên cạnh AB lấy điểm E sao cho ACB=3ACE Gọi F là giao đểm của BD và CE, I là giao diểm các tia phân giác của ctam giác BFC

a Tính góc BFC

b CHứng minh DEI là tam giác đều

BT6 Cho ABC, A=90, AB=8cm,AC=15cm

a Tính BC

b Gọi I là giao điểm các tia phân giác của ABC Tính khoảng cách từ diiểm I đến các cạnh của yam giác

BT7 Cho ABC cân ở A, kẻ tia phân giác BD của góc B và tia phân giác DM của góc DBC, đường phân giác của góc ADB cắt đường thẳng BC ở N

Chứng minh BD=1/2MN

BT8 Từ đỉnh A cua ABC, bgười ta kẻ các đường vuông góc xuống các tua phân giác trong và tia phân giác ngoài của các góc tại đỉnh B và C Chứng minh rằng chân các đưòng vuông góc đó thẳng hàng,

BT9 Ba xưởng máy nằm ở ba đỉnh của ABC , các cạnh có độ dài a,b,c với a>b>c công nhân ở ba xưỏng máy ở chung trong một nhà tập thể đặt tại giao điểm O ba đường phân giác của tam giác đó Hàng ngày một ô tô đưa công nhân từ nhà tập thể đến ba xưởng máy rồi trở về O Hỏi đi theo cách nào thì độ dài quãng đường kà ngắn nhất?

TÍNH CHẤT ĐƯỜNG TRUNG TRỰC CỦA MỘT ĐOẠN THẲNG

TÍNH CHẤT BA ĐƯỜNG TRUNG TRỰC CỦA TAM GIÁC

BT1 Đường trung trực của đoạn thẳng AB cắt AB tại H, M và N là hai điểm trên đường trung trực đó –N nằm giữa M và H)

a Chứng minh MN là tia phân giác của góc AMB

b Gọi N’ là giao điểm của AN với BN Chứng minh BN’ <AN’

BT2 Cho điểm M nằm trong góc XOY Vẽ các điểm A và B sao xcho Ox là đường trung trực của MA, Oy là đường trung trực của MB Chứng minh O là trung điểm của đoạn AB và tam giác AMB là tam giác vuônng

BT3.Cho ABC cân tại A, có A=40 Đường trung trực của AB cắt BC ở D

a Tính góc CAD

Ngày đăng: 29/10/2014, 08:46

TỪ KHÓA LIÊN QUAN

w