1. Trang chủ
  2. » Giáo án - Bài giảng

Lý thuyết KgHilbert

16 76 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 16
Dung lượng 191,92 KB

Nội dung

Ch ’u ’ ong 5 KH ˆ ONG GIAN HILBERT 1. Kh´ai niˆe . m v ` ˆe khˆong gian Hilbert 1.1 T´ıch vˆo h ’ u ´ ’ ong a) D ¯ i . nh ngh ˜ ia * Cho khˆong gian tuy ´ ˆen t´ınh X trˆen tr ’ u ` ’ ong R. T´ıch vˆo h ’ u ´ ’ ong trˆen X l`a ´anh xa . ., . : X ×X → R th ’ oa m˜an c´ac ¯di ` ˆeu kiˆe . n i) x, y = y, x, ∀x, y ∈ X, ii) x + y, z = x, z + y, z, ∀x, y, z ∈ X, iii) αx, y = αx, y, iv) x, x ≥ 0 x, x = 0 ⇔ x = 0. * N ´ ˆeu X l`a khˆong gian tuy ´ ˆen t´ınh trˆen tr ’ u ` ’ ong C th`ı t´ıch vˆo h ’ u ´ ’ ong trˆen X l`a ´anh xa . ., . : X × X → C th ’ oa m˜an c´ac ¯di ` ˆeu kiˆe . n ii), iii) v`a iv) ’ ’ o trˆen, c`on ¯di ` ˆeu kiˆe . n i) ¯d ’ u ’ o . c thay b ’ ’ oi x, y = y, x. Khˆong gian tuy ´ ˆen t´ınh X c`ung v ´ ’ oi t´ıch vˆo h ’ u ´ ’ ong x´ac ¯di . nh trˆen X ¯d ’ u ’ o . c go . i l`a khˆong gian ti ` ˆen Hilbert. 1.2 B ´ ˆat ¯d ’ ˘ ang th ´ ’ uc Schwarzt ∆ D ¯ i . nh l´y 1 V ´ ’ oi mo . i x, y ∈ X ta c´o |x, y| 2 ≤ x, x.y, y. Ch ´ ’ ung minh V ´ ’ oi mo . i x, y ∈ X v`a v ´ ’ oi mo . i α ∈ R ta c´o 0 ≤ x −αy, x − αy = x, x −2x, y + y, yα 2 = f(α). T ` ’ u ¯d´o 0 ≥ ∆  = x, y 2 − x, x.y, y. Vˆa . y |x, y| 2 ≤ x, x.y, y. ✷ 45 46 Ch ’u ’ ong 5. Khˆong gian Hilb ert 1.3 Nhˆa . n x´et Gi ’ a s ’ ’ u X l`a khˆong gian ti ` ˆen Hilbert. V ´ ’ oi mo . i x ∈ X, ¯d ˘ a . t x =  x, x. Ta c´o i) x ≥ 0. x = 0 ⇔ x = 0. ii) αx =  αx, αx =  αx, αx =  ααx, x = |α|  x, x = |α|x. iii) V ´ ’ oi mo . i x, y ∈ X, theo b ´ ˆat ¯d ’ ˘ ang th ´ ’ uc schwartz ta c´o x + y 2 = x + y, x + y = x, x + 2x, y + y, y ≤ x 2 + 2xy + y 2 = (x 2 + y 2 ) 2 . T ` ’ u ¯d´o x + y ≤ x + y. Suy ra x l`a chu ’ ˆan trˆen X. V`ı vˆa . y ta th ´ ˆay mo . i khˆong gian ti ` ˆen Hilbert ¯d ` ˆeu l`a khˆong gian ¯di . nh chu ’ ˆan v ´ ’ oi chu ’ ˆan trˆen. Do ¯d´o mo . i kh´ai niˆe . m, mˆe . nh ¯d ` ˆe trong khˆong gian ¯di . nh chu ’ ˆan ¯d ` ˆeu ¯d´ung cho khˆong gian Hilbert. 1.4 D ¯ ’ ˘ ang th ´ ’ uc h`ınh b`ınh h`anh ∆ D ¯ i . nh l´y 2 V ´ ’ oi mo . i x, y ∈ X ta c´o x + y 2 + x −y 2 = 2(x 2 + y 2 ). Ch ´ ’ ung minh V ´ ’ oi mo . i x, y ∈ X ta c´o x + y 2 + x −y 2 = x + y, x + y = 2[x, x + y, y] = 2(x 2 + y 2 ).✷ 1.5 C´ac t´ınh ch ´ ˆat i) T´ıch vˆo h ’ u ´ ’ ong l`a phi ´ ˆem h`am song tuy ´ ˆen t´ınh. Thˆa . t vˆa . y, ∀x, y ∈ X v`a ∀α, β ∈ K ta c´o αx + βy, z = αx, y + βy, z = αx, y + βy, z. T ’ u ’ ong t ’ u . , ta c´o x, αy + β z = αx, y + βx, z. 1. Kh´ai ni . ˆem v ` ˆe khˆong gian Hilbert 47 ii) Gi ’ a s ’ ’ u X l`a khˆong gian ti ` ˆen Hilbert. N ´ ˆeu {x n } n , {y n } n ⊂ X, x n → x, y n → y th`ı x n , y n  → x, y. Thˆa . t vˆa . y, ta c´o |x n , y n  −x, y| = |x n , y n  −x, y n  + x, y n  + x, y| = |x n − x, y n  + x, y n − y| ≤ x n − xy n  + xy n − y ≤ x n − xM + xy n − y → 0. 1.6 Khˆong gian Hilbert ✷ D ¯ i . nh ngh ˜ ia 1 Khˆong gian ti ` ˆen Hilbert ¯d ’ u ¯d ’ u ’ o . c go . i l`a khˆong gian Hilbert. • V´ı du . 1 Khˆong gian tuy ´ ˆen t´ınh R n l`a khˆong gian Hilbert v ´ ’ oi t´ıch vˆo h ’ u ´ ’ ong x, y = n  i=1 x i y i , x = (x 1 , x 2 , . . . , x n ), y = (y 1 , y 2 , . . . , y n ). • V´ı du . 2 Khˆong gian tuy ´ ˆen t´ınh L 2 (X, µ) l`a khˆong gian Hilbert v ´ ’ oi t´ıch vˆo h ’ u ´ ’ ong x, y =  X x(t)y(t)dµ. T´ıch phˆan t ` ˆon ta . i h ˜ ’ uu ha . n v`ı  X |x(t)y(t)|dµ ≤    X |x(t)| 2 dµ   1/2    X |y(t)| 2 dµ   1/2 (B ´ ˆat ¯d ’ ˘ ang th ´ ’ uc H¨older). • V´ı du . 3 Khˆong gian tuy ´ ˆen t´ınh l 2 l`a khˆong gian Hilbert v ´ ’ oi t´ıch vˆo h ’ u ´ ’ ong x, y = ∞  n=1 x n y n , x = (x n ), y = (y n ) ∈ l 2 . ∆ D ¯ i . nh l´y 3 V ´ ’ oi mo . i khˆong gian ti ` ˆen Hilbert X ¯d ` ˆeu t ` ˆon ta . i mˆo . t khˆong gian Hilbert X ∗ ch ´ ’ ua X sao cho X l`a khˆong gian con tr`u mˆa . t trong X ∗ . ∆ D ¯ i . nh l´y 4 Mo . i khˆong gian Banach th ’ oa m˜an ¯d ’ ˘ ang th ´ ’ uc h`ınh b`ınh h`anh ¯d ` ˆeu l`a khˆong gian Hilbert. Ch ´ ’ ung minh T´ıch vˆo h ’ u ´ ’ ong cho b ’ ’ oi x, y = 1 4 (x + y 2 + x −y 2 ), x, y ∈ X. ✷ 48 Ch ’u ’ ong 5. Khˆong gian Hilb ert 1.7 Liˆen hˆe . gi ˜ ’ ua c´ac khˆong gian . Tˆa . p X ❄ Metric d KG metric Ph´ep to´an +, . ❄ Ph´ep to´an +, . KG tuy ´ ˆen t´ınh Metric d Metric b ´ ˆat bi ´ ˆen v`a thu ` ˆan nh ´ ˆat ❄ KG ¯di . nh chu ’ ˆan ❄ D ¯ ’ u KG Banach ❄ T´ıch vˆo h ’ u ´ ’ ong ,  KG ti ` ˆen Hilbert D ¯ ’ u KG Hilb ert ❄ ✲ D ¯ K h`ınh b`ınh h`anh 2. T´ınh tr ’ u . c giao, h`ınh chi ´ ˆeu 2.1 Vector tr ’ u . c giao a) D ¯ i . nh ngh ˜ ia Gi ’ a s ’ ’ u X l`a khˆong gian ti ` ˆen Hilbert. * Hai vector x, y ∈ X ¯d ’ u ’ o . c go . i l`a tr ’ u . c giao n ´ ˆeu x, y = 0. K´ı hiˆe . u x ⊥ y. * Hˆe . S ⊂ X ¯d ’ u ’ o . c go . i l`a hˆe . tr ’ u . c giao n ´ ˆeu n ´ ˆeu c´ac vector c ’ ua S tr ’ u . c giao v ´ ’ oi nhau t ` ’ ung ¯dˆoi mˆo . t (i.e. ∀x, y ∈ S, x = y th`ı x ⊥ y). b) T´ınh ch ´ ˆat i) N ´ ˆeu x ⊥ y th`ı y ⊥ x, x ⊥ x ⇔ x = 0, 0 ⊥ x, ∀x ∈ X . ii) N ´ ˆeu x ⊥ y i , ∀i = 1, n th`ı x ⊥ α 1 y 1 + α 2 y 2 + . . . + α n y n . V`ı x, α 1 y 1 + α 2 y 2 + . . . + α n y n  = α 1 x, y 1  + α 2 x, y 2  + . . . + α n x, y n . iii) N ´ ˆeu x ⊥ y n , ∀n v`a y n → y th`ı x ⊥ y. V`ı x, y = lim n→∞ x, y n  = 0. 2. T´ınh tr . ’ uc giao, h`ınh chi ´ ˆeu 49 c) D ¯ i . nh l´y Pithagore ∆ D ¯ i . nh l´y 5 Gi ’ a s ’ ’ u S l`a mˆo . t hˆe . tr ’ u . c giao g ` ˆom c´ac vector kh´ac 0. Khi ¯d´o S l`a hˆe . ¯dˆo . c lˆa . p tuy ´ ˆen t´ınh. H ’ on n ˜ ’ ua, v ´ ’ oi n vector x 1 , x 2 , . . . , x n ∈ S ta c´o x 1 + x 2 + . . . + x n  2 = x 1  2 + x 2  2 + . . . + x n  2 (D ¯ ’ ˘ ang th ´ ’ uc Pithagore). Ch ´ ’ ung minh L ´ ˆay n vector x 1 , x 2 , . . . , x n ∈ S. Gi ’ a s ’ ’ u α 1 x 1 + α 2 x 2 + . . . + α n x n = 0. Khi ¯d´o v ´ ’ oi mo . i j = 1, n ta c´o 0 = 0, x j  = α 1 x 1 + α 2 x 2 + . . . + α n x n , x j  = n  i=1 α i x i , x j  = α j x j , x j . V`ı x j = 0 nˆen x j , x i  = x j  2 = 0. Do ¯d´o α j = 0, ∀j = 1, n. T ` ’ u ¯d´o ta suy ra {x 1 , x 2 , . . . , x n } l`a hˆe . ¯dˆo . c lˆa . p tuy ´ ˆen t´ınh. Vˆa . y S l`a hˆe . ¯dˆo . c lˆa . p tuy ´ ˆen t´ınh. Ngo`ai ra ta c´o x 1 +x 2 +. . .+x n  2 =  n  i=1 x i , n  j=1 x j  = n  i=1 n  j=1 x i , x j  = n  i=1 x i , x i  = n  i=1 x i  2 . ✷ ∆ D ¯ i . nh l´y 6 Gi ’ a s ’ ’ u {x n } n l`a hˆe . tr ’ u . c giao trong khˆong gian Hilbert X. Khi ¯d´o chu ˜ ˆoi ∞  n=1 x n hˆo . i tu . khi v`a ch ’ i khi chu ˜ ˆoi s ´ ˆo ∞  n=1 x n  2 hˆo . i tu . . Ch ´ ’ ung minh Go . i s n = n  i=1 x i , σ n = n  i=1 x i  2 . Theo ¯di . nh l´ı Pithagore, ∀n > m ta c´o s n − s m  2 = x m+1 + x m+2 + . . . + x n  2 = x m+1  2 + x m+2  2 + . . . + x n  2 = σ n − σ m . Do ¯d´o s n − s m  → 0 (n, m → ∞) khi v`a ch ’ i khi σ n − σ m → 0 (n, m → ∞). Do X l`a khˆong gian ¯d ` ˆay nˆen {s n } n hˆo . i tu . khi v`a ch ’ i khi {σ n } n hˆo . i tu . . ✷ 2.2 Ph ` ˆan b`u tr ’ u . c giao, h`ınh chi ´ ˆeu lˆen khˆong gian con ✷ D ¯ i . nh ngh ˜ ia 2 Gi ’ a s ’ ’ u X l`a khˆong gian Hilbert v`a M, N ⊂ X. * Vector x ¯d ’ u ’ o . c go . i l`a tr ’ u . c giao v ´ ’ oi tˆa . p M n ´ ˆeu x ⊥ y, ∀y ∈ M. K´ı hiˆe . u x ⊥ M. * Tˆa . p M ¯d ’ u ’ o . c go . i l`a tr ’ u . c giao v ´ ’ oi tˆa . p N n ´ ˆeu x ⊥ y, ∀x ∈ M, ∀y ∈ N. K´ı hiˆe . u M ⊥ N. * Ta th ´ ˆay tˆa . p t ´ ˆat c ’ a c´ac vector tr ’ u . c giao v ´ ’ oi tˆa . p M l`a mˆo . t khˆong gian con ¯d´ong c ’ ua X, khˆong gian con n`ay go . i l`a ph ` ˆan b`u tr ’ u . c giao c ’ ua M, k´ı hiˆe . u l`a M ⊥ . 50 Ch ’u ’ ong 5. Khˆong gian Hilb ert ∆ D ¯ i . nh l´y 7 Gi ’ a s ’ ’ u X l`a khˆong gian ti ` ˆen Hilbert, M ⊂ X v`a [M] l`a khˆong gian con ¯d´ong c ’ ua X gˆay nˆen b ’ ’ oi M. N ´ ˆeu x ⊥ M th`ı x ⊥ [M]. Ch ´ ’ ung minh. V ´ ’ oi mo . i y ∈ [M] th`ı y = lim n→∞ y n , v ´ ’ oi y n l`a mˆo . t t ’ ˆo h ’ o . p tuy ´ ˆen t´ınh (h ˜ ’ uu ha . n) c´ac ph ` ˆan t ’ ’ u c ’ ua M. V`ı x ⊥ M nˆen x ⊥ y n , ∀n. T ` ’ u ¯d´o x, y n  = 0, ∀n. Suy ra x, y = lim n→∞ x, y n  = 0, ngh ˜ ia l`a x ⊥ y. Vˆa . y x ⊥ [M]. ✷ ∆ D ¯ i . nh l´y 8 Gi ’ a s ’ ’ u M l`a khˆong gian con ¯d´ong c ’ ua khˆong gian Hilbert X. Khi ¯d´o mo . i x ∈ X ¯d ` ˆeu bi ’ ˆeu di ˜ ˆen duy nh ´ ˆat da . ng x = y + z, v ´ ’ oi y ∈ M, z ∈ M ⊥ , trong ¯d´o y l`a ph ` ˆan t ’ ’ u c ’ ua M g ` ˆan x nh ´ ˆat. Ch ´ ’ ung minh. * Khi x ∈ M th`ı ta c´o th ’ ˆe vi ´ ˆet x = x + 0, v ´ ’ oi 0 ⊥ M. * Khi x /∈ M. V`ı M ¯d´ong nˆen d = d(x, M) = inf u∈M x −u > 0. T ` ’ u ¯d´o t ` ˆon ta . i d˜ay u n } n ⊂ M sao cho lim n→∞ x −u n  = d. + Ta ch ´ ’ ung minh {u n } n l`a d˜ay Cauchy. Thˆa . t vˆa . y, ´ap du . ng ¯d ’ ˘ ang th ´ ’ uc h`ınh b`ınh h`anh cho x −u n v`a x −u m ta c´o 2x −(u n + u m ) 2 + u n − u m  2 = 2x − u n  2 + 2x −u m  2 . (5.1) V`ı u n +u m 2 ∈ M nˆen x − u n +u m 2  ≥ d. Khi ¯d´o 2x −(u n + u m ) 2 = 4x − u n + u m 2  2 ≥ 4d 2 . T ’ u (5.1) ta c´o 2(x −u n  2 + x −u m  2 ) ≥ 4d 2 + u n − u m  2 ≥ 0 (5.2) Cho qua gi ´ ’ oi ha . n (5.2) khi n, m → ∞ ta ¯d ’ u ’ o . c lim n,m→∞ u n −u m  = 0. Do ¯d´o {u n } n l`a d˜ay Cauchy trong M. V`ı M ¯d´ong trong X ¯d ` ˆay nˆen M ¯d ` ˆay. Do ¯d´o d˜ay {u n } n hˆo . i tu . v ` ˆe ph ` ˆan t ’ ’ u y thuˆo . c M. Khi ¯d´o ta c´o x − y = lim n→∞ x −u n  = d. D ¯ ˘ a . t z = x −y th`ı x = y + z v`a z = d. Ta ch ´ ’ ung minh z ⊥ M. L ´ ˆay u ∈ M. V ´ ’ oi mo . i α ∈ R ta c´o z − αu, z − αu = z, z −2z, uα + u, uα 2 = z 2 − 2z, u + u 2 α 2 2. T´ınh tr . ’ uc giao, h`ınh chi ´ ˆeu 51 = d 2 + 2z, u + u 2 α 2 . M ˘ a . t kh´ac, z − αu, z − αu = z −αu 2 = x − (y + αu) 2 ≥ d 2 , (y + αu ∈ M) nˆen ta c´o d 2 − 2z, uα + u 2 α 2 ≥ d 2 hay u 2 α 2 − 2z, uα ≥ 0, ∀α ∈ R. T ` ’ u ¯d´o ∆  = z, u 2 ≤ 0. D ¯ i ` ˆeu n`ay x ’ ay ra khi v`a ch ’ i khi z, u = 0 hay z ⊥ M. Do ¯d´o z ∈ M ⊥ . T´om la . i, ta c´o x = y + z v ´ ’ oi y ∈ M v`a z ∈ M ⊥ . + S ’ u . bi ’ ˆeu di ˜ ˆen l`a duy nh ´ ˆat. Gi ’ a s ’ ’ u x = y + z = y  + z  . Khi ¯d´o y − y  = z  − z. V`ı M v`a M ⊥ l`a c´ac khˆong gian con nˆen y − y  ∈ M, z  − z ∈ M ⊥ . Khi ¯d´o 0 = y − y  , z  − z = y −y  , y − y  . T ` ’ u ¯d´o y − y  = 0. Ta suy ra y = y  v`a z = z  . ✷  Ch´u ´y Theo ¯di . nh l´y (8), mo . i x ∈ X ¯d ` ˆeu c´o bi ’ ˆeu di ˜ ˆen x = y + z, trong ¯d´o y l`a ph ` ˆan t ’ ’ u c ’ ua M g ` ˆan x nh ´ ˆat, ¯d ’ u ’ o . c go . i l`a h`ınh chi ´ ˆeu c ’ ua x lˆen khˆong gian con M. D ¯ ˘ a . t P (x) = y th`ı P l`a to´an t ’ ’ u ¯d ’ u ’ o . c go . i l`a to´an t ’ ’ u chi ´ ˆeu lˆen khˆong gian con M. R˜o r`ang P l`a to´an t ’ ’ u tuy ´ ˆen t´ınh. H ’ on n ˜ ’ ua, P liˆen tu . c v`ı P x = y ≤  y 2 + z 2 = x (do ¯di . nh l´y Pithagore).  Hˆe . qu ’ a 1 N ´ ˆeu M l`a khˆong gian con ¯d´ong c ’ ua khˆong gian Hilbert X th`ı (M ⊥ ) ⊥ = M. Ch ´ ’ ung minh. * V`ı M ⊥ M ⊥ nˆen M ⊂ (M ⊥ ) ⊥ . * M ˘ a . t kh´ac, l ´ ˆay x ∈ (M ⊥ ) ⊥ th`ı x ⊥ M ⊥ . Theo ¯di . nh l´y (8) ta c´o x = y + z v ´ ’ oi y ∈ M v`a z ∈ M ⊥ . Khi ¯d´o 0 = x, z = y + z, z = y, z + z, z = z, z. T ` ’ u ¯d´o z = 0. D ˜ ˆan ¯d ´ ˆen x = y ∈ M. Ta suy ra ¯d ’ u ’ o . c (M ⊥ ) ⊥ = M. Vˆa . y (M ⊥ ) ⊥ = M. ✷  Hˆe . qu ’ a 2 Gi ’ a s ’ ’ u X l`a khˆong gian Hilbert, M ⊂ X v`a [M] l`a khˆong gian con ¯d´ong c ’ ua X gˆay nˆen b ’ ’ oi M. Khi ¯d´o [M] = ( M ⊥ ) ⊥ . 52 Ch ’u ’ ong 5. Khˆong gian Hilb ert Ch ´ ’ ung minh. * V ´ ’ oi mo . i x ∈ M ⊥ th`ı x ⊥ M nˆen x ⊥ [M]. T ` ’ u ¯d´o M ⊥ ⊥ M. Do ¯d´o [M] ⊂ (M ⊥ ) ⊥ . * M ˘ a . t kh´ac, v`ı M ⊂ [M] nˆen M ⊥ ⊃ [M] ⊥ . T ` ’ u ¯d´o (M ⊥ ) ⊥ ⊂ ([M] ⊥ ) ⊥ = [M]. Vˆa . y (M ⊥ ) ⊥ = M. ✷  Hˆe . qu ’ a 3 Gi ’ a s ’ ’ u X l`a khˆong gian Hilbert, M ⊂ X v`a [M] l`a khˆong gian con ¯d´ong gˆay nˆen b ’ ’ oi M. Khi ¯d´o X = [M] khi v`a ch ’ i khi n ´ ˆeu x ⊥ M th`ı x = 0. Ch ´ ’ ung minh. D ¯ ’ ˆe ´y r ` ˘ ang X ⊥ = {0}. Theo hˆe . qu ’ a 2, ta th ´ ˆay X = [M] t ’ u ’ ong ¯d ’ u ’ ong v ´ ’ oi X = (M ⊥ ) ⊥ . V`ı M ⊥ ¯d´ong nˆen ta c´o M ⊥ = ((M ⊥ ) ⊥ ) ⊥ = X ⊥ = {0}. ✷  Hˆe . qu ’ a 4 Gi ’ a s ’ ’ u M l`a khˆong gian con c ’ ua khˆong gian Hilbert X. Khi ¯d´o M tr`u mˆa . t trong X khi v`a ch ’ i khi x ⊥ M th`ı x = 0. Ch ´ ’ ung minh. V`ı M = [M] nˆen ta c´o ¯di ` ˆeu ph ’ ai ch ´ ’ ung minh. ✷ 3. Hˆe . tr ’ u . c chu ’ ˆan 3.1 Hˆe . tr ’ u . c chu ’ ˆan a) C´ac ¯di . nh ngh ˜ ia ✷ D ¯ i . nh ngh ˜ ia 3 Gi ’ a s ’ ’ u X l`a khˆong gian Hilbert. Hˆe . {e i } i ⊂ X ¯d ’ u ’ o . c go . i l`a hˆe . tr ’ u . c chu ’ ˆan n ´ ˆeu e i , e j  = δ ij =  0 n ´ ˆeu i = j 1 n ´ ˆeu i = j (i.e. Hˆe . tr ’ u . c chu ’ ˆan l`a hˆe . tr ’ u . c giao v`a chu ’ ˆan h´oa). ✷ D ¯ i . nh ngh ˜ ia 4 Gi ’ a s ’ ’ u {e i } i l`a hˆe . tr ’ u . c chu ’ ˆan trong khˆong gian Hilbert X. Khi ¯d´o v ´ ’ oi mo . i x ∈ X, s ´ ˆo ξ i = x, e i  ¯d ’ u ’ o . c go . i l`a hˆe . s ´ ˆo Fourier c ’ ua x ¯d ´ ˆoi v ´ ’ oi e i v`a chu ˜ ˆoi ∞  i=1 ξ i e i go . i l`a chu ˜ ˆoi Fourier (hay khai tri ’ ˆen Fourier) c ’ ua x theo hˆe . {e i } i . b) B ´ ˆat ¯d ’ ˘ ang th ´ ’ uc Bessel ∆ D ¯ i . nh l´y 9 (B ´ ^at ¯d ’ ˘ ang th ´ ’ uc Bessel) Gi ’ a s ’ ’ u {e i } i l`a hˆe . tr ’ u . c chu ’ ˆan trong khˆong gian Hilbert X. Khi ¯d´o v ´ ’ oi mo . i x ∈ X ta c´o ∞  i=1 ξ 2 i ≤ x 2 , v ´ ’ oi ξ i = x, e i , ∀i. 3. H . ˆe tr . ’ uc chu ’ ˆan 53 Ch ´ ’ ung minh. V ´ ’ oi mo . i x ∈ X, ¯d ˘ a . t y n = x− n  i=1 ξ i e i , (n = 1, 2, . . .) th`ı x = y n + n  i=1 ξ i e i . V ´ ’ oi j = 1, . . . , n, ta c´o y n , e j  = x − n  i=1 ξ i e i , e j  = x, e i  − n  i=1 ξ i e i , e j  = x, e j  −ξ j = 0. T ` ’ u ¯d´o y n ⊥ ξ i e i , ∀i = 1, n. Theo ¯di . nh l´y Pithagore ta c´o x 2 = y n + n  i=1 ξ i e i  2 = y n  2 + n  i= ξ i e i  2 = y n  2 + n  i=1 ξ 2 i ≥ n  i=1 ξ 2 i . Cho n → ∞ th`ı ∞  i=1 ξ 2 i ≤ x 2 . ✷  Hˆe . qu ’ a 5 Gi ’ a s ’ ’ u {e i } i l`a hˆe . tr ’ u . c chu ’ ˆan trong khˆong gian Hilbert X. Khi ¯d´o v ´ ’ oi mo . i x ∈ X chu ˜ ˆoi ∞  i=1 ξ i e i luˆon hˆo . i tu . v`a (x − ∞  i=1 ξ i e i ) ⊥ e j , ∀j. Ch ´ ’ ung minh. V`ı ∞  i=1 ξ i e i  2 = ∞  i=1 ξ 2 i ≤ x 2 < ∞. nˆen theo ¯di . nh l´y (6) ta suy ra chu ˜ ˆoi ∞  i=1 ξ i e i hˆo . i tu . . M ˘ a . t kh´ac v ’ oi mo . i j v`a n > j ta c´o x − ∞  i=1 ξ i e i , e j  = lim n→∞ x − n  i=1 ξ i e i , e j  = 0. Vˆa . y (x − ∞  i=1 ξ i e i ) ⊥ e j , ∀j. ✷ 3.2 Hˆe . tr ’ u . c chu ’ ˆan ¯d ` ˆay ¯d ’ u ✷ D ¯ i . nh ngh ˜ ia 5 Hˆe . tr ’ u . c chu ’ ˆan {e i } i ¯d ’ u ’ o . c go . i l`a ¯d ` ˆay ¯d ’ u n ´ ˆeu x ⊥ e i , ∀i th`ı x = 0. Hˆe . tr ’ u . c chu ’ ˆan ¯d ` ˆay ¯d ’ u ¯d ’ u ’ o . c go . i l`a c ’ o s ’ ’ o c ’ ua khˆong gian Hilbert. ∆ D ¯ i . nh l´y 10 Gi ’ a s ’ ’ u {e i } i l`a hˆe . tr ’ u . c chu ’ ˆan trong khˆong gian Hilbert X v`a ξ i = x, e i  (i = 1, 2, . . .) l`a hˆe . s ´ ˆo Fourier c ’ ua x ¯d ´ ˆoi v ´ ’ oi e i . Khi ¯d´o c´ac mˆe . nh ¯d ` ˆe sau l`a t ’ u ’ ong ¯d ’ u ’ ong i) {e i } i l`a hˆe . tr ’ u . c chu ’ ˆan ¯d ` ˆay ¯d ’ u. ii) V ´ ’ oi mo . i x ∈ X th`ı x = ∞  i=1 ξ i e i . 54 Ch ’u ’ ong 5. Khˆong gian Hilb ert iii) V ´ ’ oi mo . i x ∈ X th`ı x 2 = ∞  i=1 ξ 2 i , (¯d ’ ˘ ang th ´ ’ uc Passerval). iv) V ´ ’ oi mo . i x ∈ X, y ∈ X th`ı x, y = ∞  i=1 ξ i η i v ´ ’ oi ξ i = x, e i , η i = y, e i . v) Hˆe . {e i } i tuy ´ ˆen t´ınh tr`u mˆa . t trong X (ngh ˜ ia l`a L({e i }) = X). Ch ´ ’ ung minh. (i) ⇒ (ii): Ta c´o (x − ∞  i=1 ξ i e i ) ⊥ e j , ∀j. V`ı {e i } i l`a hˆe . tr ’ u . c chu ’ ˆan ¯d ` ˆay ¯d ’ u nˆen x − ∞  i=1 ξ i e i = 0. Do ¯d´o x = ∞  i=1 ξ i e i . (ii) ⇒ (iv): V ´ ’ oi ξ i = x, e i , η j = y, e j , i, j = 1, 2, . . . ta c´o x, y =  ∞  i=1 ξ i e i , ∞  j=1 η j e j  =  lim n→∞ n  i=1 ξ i e i , lim n→∞ n  j=1 η j e j  = lim n→∞  n  i=1 ξ i e i , n  j=1 η j e j  = lim n→∞ n  i=1 ξ i η i e i , e i  = lim n→∞ n  i=1 ξ i η i = ∞  i=1 ξ i η i . (iv) ⇒ (iii): T ` ’ u (iv), cho y = x th`ı ta ¯d ’ u ’ o . c x 2 = x, x = ∞  i=1 ξ 2 i . (iii) ⇒ (i): Gi ’ a s ’ ’ u c´o (iii) v`a x ⊥ e i , ∀i. T ` ’ u ¯d´o ξ i = x, e i  = 0, ∀i. Suy ra x 2 = ∞  i=1 ξ 2 i = 0. Do ¯d´o x = 0. (ii) ⇒ (v): Gi ’ a s ’ ’ u c´o (ii). Khi ¯d´o v ´ ’ oi mo . i x ∈ X ta c´o x = ∞  i=1 ξ i e i = lim n→∞ n  i=1 ξ i e i . Ta th ´ ˆay x l`a gi ´ ’ oi ha . n c ’ ua mˆo . t d˜ay c´ac t ’ ˆo h ’ o . p tuy ´ ˆen t´ınh c´ac ph ` ˆan t ’ ’ u e i nˆen x ∈ L({e i }). (v) ⇒ (i): Gi ’ a s ’ ’ u c´o (v) v`a x ⊥ e i , ∀i. T ` ’ u ¯d´o x ⊥ L({e i }). Suy ra x ⊥ L({e i }). Theo hˆe . qu ’ a (4) ta suy ra x = 0. Vˆa . y {e i } i l`a hˆe . tr ’ u . c chu ’ ˆan ¯d ` ˆay ¯d ’ u. ✷ ∆ D ¯ i . nh l´y 11 ((Riesz-Fisher)) Gi ’ a s ’ ’ u {e i } i l`a hˆe . tr ’ u . c chu ’ ˆan ¯d ` ˆay ¯d ’ u trong khˆong gian Hilbert X. N ´ ˆeu d˜ay s ´ ˆo {ξ i } i th ’ oa m˜an ∞  i=1 ξ 2 i < ∞ th`ı c´o mˆo . t vector duy nh ´ ˆat x ∈ X nhˆa . n ξ i l`am hˆe . s ´ ˆo Fourier v`a x = ∞  i=1 ξ i e i , x 2 = ∞  i=1 ξ 2 i .

Ngày đăng: 27/10/2014, 01:00

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w