1. Trang chủ
  2. » Giáo án - Bài giảng

Đại số cơ sở - 2004

1 123 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 1
Dung lượng 75,45 KB

Nội dung

Trường Đại học Sư phạm TP.HCM CỘNG HÒA XÃ HỘI CHỦ NGHĨA VIỆT NAM Hội đồng Tuyển sinh Sau đại học 2004 Độc lập - Tự do - Hạnh phúc ĐỀ THI TUYỂN SINH SAU ĐẠI HỌC NĂM 2004 MÔN THI : ĐẠI SỐ (CƠ SỞ) (Thời gian 180 phút, không kể thời gian phát đề) Bài I: Cho A là vành giao hoán có đơn vị. a) Định nghĩa iđêan tối đại của vành A. b) Cho M là một iđêan của A. Chứng minh M là iđêan tối đại khi và chỉ khi A / M là trường. c) Cho M là một iđêan của A. Chứng minh: Nếu ∀x ∈ M 1 + x khả nghịch trong A thì M là iđêan tối đại duy nhất của A. Bài II: a) Cho (G, ·) là một nhóm có 2n phần tử và H là một nhóm con của G có n phần tử. Chứng minh ∀x ∈ G x 2 ∈ H b) Trong nhóm đối xứng S 4 (nhóm các phép thế bậc 4) hãy xét tính chuẩn tắc của các nhóm con xiclic sinh bởi một vòng xích độ dài 3. Bài III: Trong trường các số hữu tỷ Q ta xét tập con: A =  m n ∈ Q/n là số lẻ  a) Chứng minh A là vành con của Q. b) Tìm các phần tử khả nghịch trong vành A. c) Chứng minh vành con A là một vành chính. Bài IV: Xét đa thức f(x) = x 3 + x + 1 ∈ Q[x] 1) Chứng minh f(x) = x 3 + x + 1 bất khả vi trong Q[x] 2) Gọi α là nghiệm thực của f(x) = x 3 + x + 1 (nghiệm thực này là duy nhất). Đặt K = {aα 2 + bα + c/a, b, c ∈ Q} a) Chứng minh ánh xạ α : Q[x] −→ R g(x) −→ g(α) là đồng cấu vành. b) Tìm Kerϕ. c) Chứng minh K là một trường. HẾT Ghi chú - Thí sinh không được sử dụng tài liệu 1 . Trường Đại học Sư phạm TP.HCM CỘNG HÒA XÃ HỘI CHỦ NGHĨA VIỆT NAM Hội đồng Tuyển sinh Sau đại học 2004 Độc lập - Tự do - Hạnh phúc ĐỀ THI TUYỂN SINH SAU ĐẠI HỌC NĂM 2004 MÔN THI : ĐẠI SỐ (CƠ SỞ) (Thời. I: Cho A là vành giao hoán có đơn vị. a) Định nghĩa iđêan tối đại của vành A. b) Cho M là một iđêan của A. Chứng minh M là iđêan tối đại khi và chỉ khi A / M là trường. c) Cho M là một iđêan của. nhóm con xiclic sinh bởi một vòng xích độ dài 3. Bài III: Trong trường các số hữu tỷ Q ta xét tập con: A =  m n ∈ Q/n là số lẻ  a) Chứng minh A là vành con của Q. b) Tìm các phần tử khả nghịch

Ngày đăng: 27/10/2014, 00:00

TỪ KHÓA LIÊN QUAN

w