1. Trang chủ
  2. » Giáo án - Bài giảng

Bài tập máy tính casio - Dạng toán Dãy số

12 9,6K 78

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 12
Dung lượng 1,35 MB

Nội dung

MỘT SỐ DẠNG DÃY SỐ VÀ VÍ DỤ1... Khi bấm  SHIFT COPY lấy lại quy trình và tính tiếp nhờ phím ... Khi bấm  SHIFT COPY lấy lại quy trình và tính tiếp un nhờ phím .. a Lập một quy trình

Trang 1

MỘT SỐ DẠNG DÃY SỐ VÀ VÍ DỤ

1 Dạng 1 - Dãy Phi - bô - na - xi

(Fibonacci - là dãy số có dạng u1=1; u2 = 1; un+1= un + un-1(n = 1, 2, 3…)

Ta có công thức tổng quát:

n

u

5

- Quy trình tính trên máy tính Casio fx-500 MS

Bấm 1 SHIFT STO A

1SHIFT STO B Và lặp lại dãy phím:

 ALPHA A SHIFT STO A

 ALPHA B SHIFT STO B Bằng phím  

Khi bấm 1 SHIFT STO A đưa u2 = 1 vào A

Khi bấm 1SHIFT STO B nghĩa là cộng u2 = 1 với u1 = 1 được u3 = 2 và ghi vào B

Khi bấm  ALPHA A SHIFT STO A cộng u3= 2 với u2 = 1 được u4 = u3 + u2 = 3 và ghi vào A Khi bấm  ALPHA B SHIFT STO B nghĩa là cộng u4 = 3 với u3 = 2 trong B được u5 = u4 + u3 = 5

và ghi vào B Tiếp tục sử dụng quy trình trên, ta sử dụng hai ô A và B để lần lượt tính các giá trị un

bằng cách bấm liên tiếp phím   ta sẽ được u6= 8; u7 =13; u8 = 21

- Quy trình tính trên máy tính Casio fx-570 MS

+ Quy trình 1: Bấm 1 SHIFT STO A

1SHIFT STO B Và lặp lại dãy phím:

 ALPHA A SHIFT STO A

 ALPHA B SHIFT STO B Bằng phím COPY 

Giải thích:

Khi bấm 1 SHIFT STO A đưa u2 = 1 vào A

Khi bấm 1SHIFT STO B nghĩa là cộng u2=1 với u1=1 được u3= 2 và ghi vào B

Khi bấm  ALPHA A SHIFT STO A cộng u3= 2 với u2 = 1 được u4 = u3 + u2 = 3 và ghi vào A Khi bấm  ALPHA B SHIFT STO B nghĩa là cộng u4 = 3 với u3 = 2 trong B được u5 = u4 + u3 = 5

và ghi vào B Tiếp tục sử dụng quy trình trên, ta sử dụng hai ô A và B để lần lượt tính các giá trị un

bằng cách bấm liên tiếp phím COPY  ta sẽ được u6= 8; u7 =13; u8 = 21

Quy trình 2: Bấm 1 SHIFT STO A

1SHIFT STO B

 ALPHA A SHIFT STO A

 ALPHA B SHIFT STO B  SHIFT COPY

Lặp lại phím 

Giải thích:

Khi bấm 1 SHIFT STO A đưa u2 = 1 vào A

Trang 2

Khi bấm 1SHIFT STO B nghĩa là cộng u2 =1 với u1=1 được u3=2 và ghi vào B

Khi bấm  ALPHA A SHIFT STO A cộng u3= 2 với u2 = 1 được u4 = u3 + u2 = 3 và ghi vào A Khi bấm  ALPHA B SHIFT STO B nghĩa là cộng u4 = 3 với u3 = 2 trong B được u5 = u4 + u3 = 5

và ghi vào B

Khi bấm  SHIFT COPY lấy lại quy trình và tính tiếp nhờ phím 

Quy trình 3: Tính só Phi - bô - na - xi un trên máy Casio fx - 570 MS nhờ công thức nghiệm:

Bấm CALC máy hiện X ?

Thay X bằng các số tự nhiên từ 1 đến 49 ta được các un tương ứng

Lời bình: Máy tính Casio fx - 570 MS tiện hơn máy tính Casio fx - 500 MS vì chỉ cần khai báo công thức một lần, sau đó, mỗi lần bấm phím CALC chỉ cần thay X bằng các số tự nhiên từ 1 đến 49 ta được các u tương ứng

2 Dạng 2 Dãy Lu - ca (Lucas - là dãy số tổng quát của dãy Phi - bô - na - xi với u1 = a; u2 = b; un+1=

un + un-1 với mọi n  2 a và b là hai số nào đó

Quy trình 1:

Bấm b SHIFT STO A

a SHIFT STO B và lặp lại dẫy phím

 ALPHA A SHIFT STO A

 ALPHA B SHIFT STO B Bằng phím COPY 

Giải thích

Bấm b SHIFT STO A nghĩa là đưa u2 = b vào A

Bấm a SHIFT STO B nghĩa là cộng u2 =b với u1 =a được u3=a + b và ghi vào B

Khi bấm  ALPHA A SHIFT STO A cộng u3= a + b với u2 = b được u4 = u3 + u2 = a + 2b và ghi vào A

Khi bấm  ALPHA B SHIFT STO B nghĩa là cộng u4 = a + 2b với u3 = a + b trong B được u5 = u4

+ u3 = 2a + 3b và ghi vào B Tiếp tục sử dụng quy trình trên, ta sử dụng hai ô A và B để lần lượt tính các giá trị un bằng cách bấm liên tiếp phím COPY  ta sẽ được u6; u7; u8

Quy trình 2: : Bấm b SHIFT STO A

a SHIFT STO B

 ALPHA A SHIFT STO A

 ALPHA B SHIFT STO B  SHIFT COPY

Lặp lại phím 

Giải thích:

Khi bấm b SHIFT STO A đưa u2 = 1 vào A

Khi bấm 1SHIFT STO B nghĩa là cộng u2 =1 với u1=1 được u3=2 và ghi vào B

Khi bấm  ALPHA A SHIFT STO A cộng u3= 2 với u2 = 1 được u4 = u3 + u2 = 3 và ghi vào A

Trang 3

Khi bấm  ALPHA B SHIFT STO B nghĩa là cộng u4 = 3 với u3 = 2 trong B được u5 = u4 + u3 = 5

và ghi vào B

Khi bấm  SHIFT COPY lấy lại quy trình và tính tiếp un nhờ phím 

Ví dụ 1:

Cho dãy số u1 = 8; u2 =13; un+1= un + un-1 ( n = 2, 3, 4…)

1) Hãy lập một quy trình bấm phím liên tục để tính giá trị của un+1 với mọi n  2

2) Sử dụng quy trình trên để tính giá trị u13; u17

Hướng dẫn giải trên máy tính Casio fx - 570 MS

Ta thấy rằng đây chính là dãy Lu - ca có a = 8; b = 13

Sử dụng quy trình trên để tính un+1 với mọi n  2 như sau:

13 SHIFT STO A (gán u2 = 13 vào A )

 8 SHIFT STO B (gán u3 = 21 vào B )

 ALPHA A SHIFT STO A (gán u4 = 34 vào A )

 ALPHA B SHIFT STO B (gán u5 = 55 vào B )

 SHIFT COPY

Lặp lại phím 

Để tính tiếp u13 ta ấn tiếp liên tiếp phím  8 lần được số 2584 nghĩa là u13 = 2584

Sau khi tính được u13 để tính tiếp u17 ta ấn tiếp 4 phím  được số 17711 nghĩa là

u17 =17711

Hướng dẫn giải trên máy tính Casio fx - 500 MS

13 SHIFT STO A (gán u2 = 13 vào A )

 8 SHIFT STO B (gán u3 = 21 vào B )

 ALPHA A SHIFT STO A (gán u4 = 34 vào A )

 ALPHA B SHIFT STO B (gán u5 = 55 vào B )

Lặp lại dãy phím trên bằng cách ấn liên tiếp phím   ta được các un tương ứng

Ví dụ 2: Cho dãy số u1 = 144; u2 = 233; un+1 = un + un-1 (n = 2, 3, 4 )

a) Lập một quy trình bấm phím để tính un+1

b) Tính u12; u20; u25, u30

c) Tính chính xác đến 5 chữ số sau dấu phẩy các tỉ số: 2 3 4 6

1 2 3 5

u u u u .

Hướng dẫn giải trên máy tính Casio fx - 500 MS

233 SHIFT STO A (gán u2 = 233 vào A )

 144 SHIFT STO B (gán u3 = 377 vào B )

 ALPHA A SHIFT STO A (gán u4 = 610 vào A )

 ALPHA B SHIFT STO B (gán u5 = 987 vào B )

Lặp lại dãy phím trên bằng cách ấn liên tiếp phím   ta được các un tương ứng

Để tính u12 ta ấn liên tiếp 7 lần cặp phím   được u12=28657

Để tính tiếp u20 ta ấn liên tiếp 8 lần cặp phím   nữa được u20= 1346269

Trang 4

Để tính tiếp u25 ta ấn liên tiếp 5 lần cặp phím   nữa được u25= 14930352

Để tính tiếp u30 ta ấn liên tiếp 5 lần cặp phím   nữa được u30= 165580141

Hướng dẫn giải trên máy tính Casio fx - 570 MS:

233 SHIFT STO A (gán u2 = 233 vào A )

 144 SHIFT STO B (gán u3 = 377 vào B )

 ALPHA A SHIFT STO A (gán u4 = 610 vào A )

 ALPHA B SHIFT STO B (gán u5 = 987 vào B )

 SHIFT COPY

Lặp lại phím 

Lặp lại phím  ta tính tiếp được u6= 1597; u7 = ; 2584

Đến đây dễ dàng tính được các tỉ số theo yêu cầu của đề bài:

3 2

6 4

u

1,61805; 1,61802

u

1,61803; 1, 61803

3.Dãy Lu - ca suy rộng dạng u1=a; u2 = b; un = aun + bun-1

- Quy trình bấm phím trên máy tính Casio fx - 570 MS:

+ Quy trình 1:

b SHIFT STO A a  ba SHIFT STO B

Lặp lại dãy phím a  ALPHA A b SHIFT STO A

a  ALPHA B b SHIFT STO B

Giải thích: Bấm b SHIFT STO A a  ba SHIFT STO B đưa b = u2 vào ô nhớ A , tính u3 = au2

+ bu1 và gán u3 vào ô nhớ B

Dãy phím a  ALPHA A b SHIFT STO A tính u4 = au3 + bu2 và gán u3 vào ô nhớ A , còn trong ô nhớ B là u3 thực hiện a  ALPHA B b SHIFT STO B ta có u5 trên màn hình và trong ô nhớ

B

Tiếp tục vòng lặp lại được các số hạng của un+1=aun + bun-1

+ Quy trình 2: b SHIFT STO A a  b a SHIFT STO B

a  ALPHA A b SHIFT STO A

a  ALPHA B b SHIFT STO B

 SHIFT COPY

Lặp lại phím 

Giải thích: Tương tự như quy trình 1 nhưng ở quy trình 2 ta sử dụng các phím  SHIFT COPY để lặp lại quy trình

Ví dụ 1: Cho dãy u1 = 2, u2 = 20, un+1 = 2un + un-1 ( n = 2, 3, ….)

a) Tính u3 , u4 , u5 , u6 , u7

b) Viết quy trình bấm phím để tính un

Trang 5

Hướng dẫn giải trên máy tính Casio fx - 500MS:

20 SHIFT STO A 2  2 SHIFT STO B (gán u3 = 42 vào B )

2  ALPHA A SHIFT STO A (gán u4 = 104 vào A )

2  ALPHA B SHIFT STO B (gán u5 = 250 vào B )

Lặp lại quy trình trên bằng phím   ta tính được u6 = 604, u7 = 1458

Hướng dẫn giải trên mãy tính Casio fx - 570 MS:

20 SHIFT STO A 2  2 SHIFT STO B (gán u3 = 42 vào B )

2  ALPHA A SHIFT STO A (gán u4 = 104 vào A )

2  ALPHA B SHIFT STO B (gán u5 = 250 vào B )

 SHIFT COPY

Lặp lại phím 

Như vậy sử dụng máy tính Casio fx - 570 MS để lặp lại một quy trình chỉ cần ấn liên tiếp phím , còn đối với máy tính Casio fx - 500 MS để lặp lại một quy trình thì phải ấn liên tiếp cặp phím  

Ví dụ 2: Cho dãy số

n

u

2 3

 a) Tìm 8 số hạng đầu tiên của dãy

b) Lập một công thức truy hồi để tính un+2 theo un + 1 và un

c) Lập một quy trình để tính un?

Hướng dẫn giải trên máy tính Casio fx - 500 MS:

a) Tính 8 số hạng đầu tiên của dãy theo công thức tổng quát

( ( 2  3 ) ^ 1 ( 2  3 ) ^ 1 )  2 3 (u1= 1)

Sử dụng phím REPLAY để sửa công thức trên di chuyển con chỏ tới vị trí số mũ là 1 sửa thành số mũ là 2 rồi bấm , tiếp tục sửa số mũ là 2 thành 3 ta sẽ tìm được 8 số hạng đầu của dãy b) Đặt a (2  3); b (2  3)ta có a+ b = 4 và ab = 1

n

a b (a b)(a b ) a b ab u

2 3

n

u

2 3

n

4(a b ) (a b )

u

  =4un-1 - un-2

Vậy un = 4un- 1 - un-2 hay un+2 =4un+1 - un

c) Lập quy trình tính un

Có u1 = 1, u2 = 4

4 SHIFT STO A (gán u2 = 4 vào A )

4  1 SHIFT STO B (tính và gán u3 = 15 vào B )

4  ALPHA A SHIFT STO A (gán u4 = 56 vào A )

4  ALPHA B SHIFT STO B (gán u5 = 209 vào B )

Trang 6

Lặp lại quy trình trên bằng phím   ta tính được u6 = 780, u7 = 2911

Hướng dẫn giải trên máytính Casio fx - 570 MS

a) Tính 8 số hạng đầu tiên của dãy theo công thức tổng quát

Bấm CALC máy hiện X ?

Thay X bằng các số tự nhiên từ 1 đến 8 ta được các un tương ứng

u1= 1, u2= 4, u3= 15, u4= 56, u5= 209, u6= 780, u7= 2911, u8= 10864

c) Lập quy trình tính un

4 SHIFT STO A (gán u2 = 4 vào A )

4  1 SHIFT STO B (tính và gán u3 = 15 vào B )

4  ALPHA A SHIFT STO A (gán u4 = 56 vào A )

4  ALPHA B SHIFT STO B (gán u5 = 209 vào B )

 SHIFT COPY

Lặp lại phím 

Tìm được các un tương ứng

4 Dãy Phi - bô - na - xi bậc ba

Dạng u1 = u2 = 1, u3 = 2, un+1 = un + un-1 + un-2 (n=3, 4, 5, )

- Quy trình trên máy tính Casio fx 570 - MS:

1 SHIFT STO A 2 SHIFT STO B

ALPHA B  ALPHA A 1 SHIFT STO C

Lặp lại dãy phím  ALPHA B  ALPHA A SHIFT STO A

 ALPHA C  ALPHA B SHIFT STO B

 ALPHA A  ALPHA C SHIFT STO C

Bằng cách bấm tiếp:  SHIFT COPY và bấm liên tiếp phím 

Giải thích:

Bấm:1 SHIFT STO A 2 SHIFT STO B nghĩa là gán u1 = 1 vào A , gán u3 = 2 vào B

Bấm: ALPHA B  ALPHA A 1 SHIFT STO C tính u4 và gán vào C

 ALPHA B  ALPHA A SHIFT STO A tính u5 và gán vào A

 ALPHA C  ALPHA B SHIFT STO B tính u6 và gán vào B

 ALPHA A  ALPHA C SHIFT STO C tính u7 và gán vào C

Ta được dãy 1, 1, 1, 3, 5, 9, 17, 31, 57, 105,

5 Dãy phi tuyến dạng: u 1 =a, u 2 = b, u n+1 = 2 2

n n-1

u + u

- Quy trình trên máy tính Casio fx - 570 MS:

Bấm: b SHIFT STO A

x2 a x SHIFT STO B2

Lặp lại dãy: x2  ALPHA A x SHIFT STO A2

x2  ALPHA B x SHIFT STO B2

Bằng cách phím  SHIFT COPY và bấm liên tiếp phím 

Trang 7

- Giải thích:

Bấm b SHIFT STO A gán u2= b vào A

x2 a x SHIFT STO B2 tính u3 = b2 + a2 và gán vào B

Lặp lại dãy: x2  ALPHA A x SHIFT STO A2 tính u4 = 2 2

3 2

u + u và gán vào A

x2  ALPHA B x SHIFT STO B2 tính 2 2

u = u + u và gán vào B

6 Một số dãy số khác

Bài 1: Cho dãy số

3

n

a 3 a

1 a

a) Lập quy trình bấm phím tính an+1

b) Tính an với n = 2, 3, 4, , 10

Hướng dẫn giải trên máy Casio fx - 500 MS, Casio fx - 570 MS

a) Bấm 3  ( Ans ^ 3 Ans )  ( 1 Ans ^ 3 )

Lặp lại phím  ta được :

0,195615199; 0,447318398; 0,672491028; 0,757778244; 0,761046838; 0,760889819; 0,76089781; 0,760897404; 0,760897425; 0,760897424; 0,760897424; 0,760897424,0,760897424

Giải thích:

Bấm 3  gán a1 = 3 vào ô nhớ Ans

Bấm ( Ans ^ 3  Ans )  ( 1 Ans ^ 3 ) tính a2

Bấm  gán u2 vào ô nhớ Ans

(Mỗi lần bấm phím  thì giá trị trên màn hình được gán vào ô nhớ Ans )

Bài 2:Cho dãy số

n

n 1

n

a) Hãy tính xn với n = 1, 2, , 15 với x0 = 1; x0 = 3

b) Chứng minh rằng dãy số trên là tuần hoàn với mọi x0 cho trước bất kỳ, tức là tồn tại mọt số N nguyên dương sao cho với mọi x0 dãy {xn} xác định như trên ta có:

xn+N =xn với mọi n= 1, 2, 3,

Hướng dẫn giải trên máy Casio fx - 500 MS, Casio fx - 570 MS:

a) Khai báo giá trị đầu: x0 = 1

Bấm: 1 

Khai báo công thức n 1 n

n

x

Bấm tiếp: ( 3 Ans  1 ( Ans  3 ) (1)

Liên tiếp bấm phím  được xn

Khai báo lại giá trị đầu x'0 = 3 Bấm 3 

Trang 8

Dùng phím để đưa về dòng công thức (1) và liên tiếp bấm phím được x'n

x1= 0,267949192 x'1= 0,886751345

x2= - 0,267949192 x'2= 0,204634926

x3= - 1 x'3= - 0,333333333

x4= - 3,732050808 x'4= - 1,127711849

x5= 3,732050808 x'5= - 4,886751346

x6= 1 x'6= 3

x7= 0,267949192 x'7= 0,886751345

x1= - 0,267949192 x'8= 0,204634926

Tính theo công thức truy hồi ta được:

0

x

Vậy {xn} tuần hoàn chu kỳ là N = 6

III - Một số bài tập đề nghị bạn đọc tự viết quy trình để giải

Bài 1: Biết dãy só {an} xác định như sau: a1 = 1; a2 = 2; an+2 =3an+1 +2an với mọi n nguyên dương

Tính a15

Bài 2: Cho dãy số u1 = 1, u2 = 2, un+1 = 2003un + 2004un-1 ( n = 2, 3, 4, )

a) Tính u4, u5, u6

b) Lập quy trình tính un+1

Cho dãy số un=(3 + 7)n +(3 - 7)n (n = 0, 1, 2,…)

Lập công thức tính un+2theo un và un+1

Lập quy trình tính un, n=5,…,10

Kết quả : u2 = 32; u3 = 180; u4 = 1016; u5 = 5736; u6 = 32384; u7 = 182832;

u8 = 1032224; u9 = 5827680; u10 = 32901632;

Bài tập 3: Cho dãy số

n

(10 3) (10 3) u

2 3

a) Tính các giá trị u1, u2; u3, u4

b) Xác định công thức truy hồi tính un+2 theo un+ 1 và un

c) Lập quy trình tiên tục tính un+2 theo un+ 1 và un rồi tính u5, u6, u16

Bài 4: Cho dãy số {un} xác định bởi:

u1 = 1; u2 = 3; un =3un-1 khi n chẵn và un =4un-1 + 2un-2 khi n lẻ

a) Lập quy trình bấm phím liên tục tính un

b) Tính u10, u11, u12, u14, u15

Hướng dẫn: Tính trên máy Casio fx - 500 MS:

1 2 3 4 SHIFT STO A  

Trang 9

Lặp lại dãy phím   3 4 ALPHA A 2 SHIFT STO A nhờ  

Tính trên máy Casio fx - 570 MS:

1SHIFT STO A 2 SHIFT STO B

3 ALPHA A SHIFT STO B

SHIFT COPY

Kết quả: u10 = 115548; u11 = 537824; u12 = 1613472; u13 = 7529536; u14 = 22588608 ; u15 = 105413504

Bài 5: Một học sinh đã viết liên tiếp các tổng sau:

S1 = 1 + 2; S2 = (1 + 2) + 4 + 5; S3 = (1 + 2 + 3) + 7 + 8 + 9:

Tính S50; S60; S80; S100.

Bài 6: Cho U1 = 4, U2 = 7, Un+1 = 3Un – 2Un-1 (n > 3)

a) Viết quy trình bấm phím tính Un (n > 3)

b) Tính U6; U12?

Bài 7: Cho dãy số 1

4 1

n n n

x x x

 , với n 1

a) Lập một quy trình bấm phím tính xn+1 với x1 = 1 và tính x100

b) Lập một quy trình bấm phím tính xn+1 với x1 = - 2 và tính x100

Bài 8: Cho dãy số {Un} như sau Un = 3 2 2  n 3 2 2 n với n = 1, 2, 3, 4,……

a) Tính U1; U2, U3; U4, U5; U6

b) Viết công thức truy hồi để tính Un+2 theo Un+1 và Un

c) Viết một quy trình ấn phím liên tục để tính Un+2 với n 1.(nêu rõ loại máy)

Bài 9: Cho dãy số {Un} như sau U0 = U1 = 2; Un+2 = Un+1.Un + 1 với n = 0, 1, 2, 3, 4,…

a) Viết một quy trình ấn phím liên tục để tính Un với n 2.(nêu rõ loại máy)

b) Tính U2, U3; U4, U5; U6 U7; U8

Bài 10: Cho dãy số {Un} như sau Un = 5 2 6  n 5 2 6 n với n = 1, 2, 3, 4,……

a) Chứng minh rằng Un+2 + Un = 10Un+1 với  n 1, 2,3,

b) Hãy lập một quy trình ấn phím liên tục để tính Un+2 với n 1.(nêu rõ loại máy)

Bài 11: Cho dãy số {Un} như sau Un = 3 5 3 5 2

, với n = 0,1,2,3,…

a) Tính 5 số hạng đầu tiên của dãy?

b) Lập công thức truy hồi tính Un+1 theo Un và Un-1

c) Lập một quy trình ấn phím liên tục để tính Un+1 với n 1.(nêu rõ loại máy)

Bài 12: Cho dãy số {Un} như sau Un = (2 3) (2 3)

2 3

, với n = 0,1,2,3,…

a) Tính 8 số hạng đầu tiên của dãy?

b) Lập công thức truy hồi tính Un+2 theo Un và Un+1

c) Lập một quy trình ấn phím liên tục để tính Un+1 với n 1.(nêu rõ loại máy)

Bài 13: Cho dãy số {Un} như sau Un = (5 7) (5 7)

2 7

, với n = 0,1,2,3,…

a) Tính 5 số hạng đầu tiên của dãy?

Trang 10

b) Lập công thức truy hồi tính Un+1 theo Un và Un-1.

c) Lập một quy trình ấn phím liên tục để tính Un+1 với n 1.(nêu rõ loại máy)

Bài 14: Cho dãy số:

2

1 2

4 1

n n

n

x x

x

 

 với n 1

a) Lập Quy trình tính xn, biết x1 = 0,25

b) Tính x100

Bài 15: Cho dãy số: u = 2, u = 3; u = 4, u = 3u - 6u +12u1 2 3 n+3 n+2 n+1 n với n = 1, 2, 3,

a) Lập một quy trình bấm phím liên tục để tính un+3 với n = 1, 2, 3,

b) Tính các giá trị u ; u 14 18

Bài 16: Cho dãy số được xác định bởi:

1 2

n+2 n+1 n

u = 1, u 2

u = 3u + 4 u + 5 ; n N*

Hãy lập quy trình tính un

2

 Chứng minh rằng số A = 4an.an+2 + 1 là số chính phương

Giải:

- Tính một số số hạng đầu của dãy (an) bằng quy trình:

= =

- Ta được dãy: 1, 3, 6, 10, 15, 21, 28, 36, 45, 55,

- Tìm quy luật cho dãy số:

1

1(1 1)

1

2

a   

2

2(2 1) 3

2

a     dự đoán công thức số hạng tổng quát:

3

3(3 1) 6

2

a   

GV: Nguyễn Tiến Đào





2

n

n n

a   (1)

Ngày đăng: 25/10/2014, 00:00

TỪ KHÓA LIÊN QUAN

w