CHUYÊN ĐỀ GIẢI TÍCH TỔ HỢP

22 229 0
CHUYÊN ĐỀ GIẢI TÍCH TỔ HỢP

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

Phạm Thuỳ Linh – 12A10- THPT KT(06 – 09) I- GIẢI TÍCH TỔ HỢP 1. Giai thừa : n! = 1.2 n 0! = 1 n! /(n – k)! = (n – k + 1).(n – k + 2) n 2. Nguyên tắc cộng : Trường hợp 1 có m cách chọn, trường hợp 2 có n cách chọn; mỗi cách chọn đều thuộc đúng một trường hợp. Khi đó, tổng số cách chọn là : m + n. 3. Nguyên tắc nhân : Hiện tượng 1 có m cách chọn, mỗi cách chọn này lại có n cách chọn hiện tượng 2. Khi đó, tổng số cách chọn liên tiếp hai hiện tượng là : m x n. 4. Hoán vị : Có n vật khác nhau, xếp vào n chỗ khác nhau. Số cách xếp : P n = n !. 5. Tổ hợp : Có n vật khác nhau, chọn ra k vật. Số cách chọn : )!kn(!k !n C k n − = 6. Chỉnh hợp : Có n vật khác nhau. Chọn ra k vật, xếp vào k chỗ khác nhau số cách : = = − k k k n n n k n! A , A C .P (n k)! Chỉnh hợp = tổ hợp rồi hoán vị 7. Tam giác Pascal : 1 4 4 3 4 2 4 1 4 0 4 3 3 2 3 1 3 0 3 2 2 1 2 0 2 1 1 0 1 0 0 CCCCC CCCC CCC CC C 1 1 1 2 1 1 3 3 1 1 4 6 4 1 Tính chất : k 1n k n 1k n kn n k n n n 0 n CCC CC,1CC + − − =+ === 8. Nhị thức Newton : * n0n n 11n1 n 0n0 n n baC baCbaC)ba( +++=+ − a = b = 1 : 0 1 n n n n n C C C 2+ + + = Với a, b ∈ {±1, ±2, }, ta chứng minh được nhiều đẳng thức chứa : n n 1 n 0 n C, ,C,C * nn n 1n1 n n0 n n xC xaCaC)xa( +++=+ − Ta chứng minh được nhiều đẳng thức chứa n n 1 n 0 n C, ,C,C bằng cách : - Đạo hàm 1 lần, 2 lần, cho x = ±1, ±2, a = ±1, ±2, - Nhân với x k , đạo hàm 1 lần, 2 lần, cho x = ±1, ±2, , a = ±1, ±2, - Cho a = ±1, ±2, , ∫∫ ±± 2 0 1 0 hay hay β α ∫ Chú ý : * (a + b) n : a, b chứa x. Tìm số hạng độc lập với x : k n k k m n C a b Kx − = Giải pt : m = 0, ta được k. * (a + b) n : a, b chứa căn . Tìm số hạng hữu tỷ. m r k n k k p q n C a b Kc d − = Giải hệ pt :    ∈ ∈ Zq/r Zp/m , tìm được k * Giải pt , bpt chứa C,A k n k n : đặt điều kiện k, n ∈ N * , k ≤ n. Cần biết đơn giản các giai thừa, qui đồng mẫu số, đặt thừa số chung. 1 http://hoiphuonghoangvn.7forum.info Phạm Thuỳ Linh – 12A10- THPT KT(06 – 09) * Cần phân biệt : qui tắc cộng và qui tắc nhân; hoán vị (xếp, không bốc), tổ hợp (bốc, không xếp), chỉnh hợp (bốc rồi xếp). * Áp dụng sơ đồ nhánh để chia trường hợp , tránh trùng lắp hoặc thiếu trường hợp. * Với bài toán tìm số cách chọn thỏa tính chất p mà khi chia trường hợp, ta thấy số cách chọn không thỏa tính chất p ít trường hợp hơn, ta làm như sau : số cách chọn thỏa p. = số cách chọn tùy ý - số cách chọn không thỏa p. Cần viết mệnh đề phủ định p thật chính xác. * Vé số, số biên lai, bảng số xe : chữ số 0 có thể đứng đầu (tính từ trái sang phải). * Dấu hiệu chia hết : - Cho 2 : tận cùng là 0, 2, 4, 6, 8. - Cho 4 : tận cùng là 00 hay 2 chữ số cuối hợp thành số chia hết cho 4. - Cho 8 : tận cùng là 000 hay 3 chữ số cuối hợp thành số chia hết cho 8. - Cho 3 : tổng các chữ số chia hết cho 3. - Cho 9 : tổng các chữ số chia hết cho 9. - Cho 5 : tận cùng là 0 hay 5. - Cho 6 : chia hết cho 2 và 3. - Cho 25 : tận cùng là 00, 25, 50, 75. II- ĐẠI SỐ 1. Chuyển vế : a + b = c ⇔ a = c – b; ab = c ⇔        = ≠ == b/ca 0b 0cb a/b = c ⇔    ≠ = 0b bca ; 1n2 1n2 baba + + =⇔= 2n 2n 2n 2n b a a b a b, a b a 0  = = ⇔ = ± = ⇔  ≥     α=⇔= ≥ ±= ⇔= α a bbloga, 0a ab ba    > <    < > >= ⇔<−<⇔<+ b/ca 0b b/ca 0b 0c,0b cab;bcacba 2. Giao nghiệm :    <⇔ < <    >⇔ > > }b,amin{x bx ax ;}b,amax{x bx ax   Γ  > ∨ < < <   ⇔ ⇔   < Γ ≥     Γ  p x a p q a x b(neáua b) ; x b VN(neáua b) q Nhiều dấu v : vẽ trục để giao nghiệm. 3. Công thức cần nhớ : a. : chỉ được bình phương nếu 2 vế không âm. Làm mất phải đặt điều kiện.    ≤≤ ≥    ⇔≤ = ≥ ⇔= 22 ba0 0b ba, ba 0b ba 2 http://hoiphuonghoangvn.7forum.info Phạm Thuỳ Linh – 12A10- THPT KT(06 – 09)    ≥ ≥    ∨ ≥ < ⇔≥ 2 ba 0b 0a 0b ba )0b,aneáu(b.a )0b,aneáu(b.a ab <−− ≥ = b. . : phá . bằng cách bình phương : 2 2 aa = hay bằng định nghĩa : )0aneáu(a )0aneáu(a a <− ≥ = baba; ba 0b ba ±=⇔=    ±= ≥ ⇔= a b b a b≤ ⇔ − ≤ ≤ b 0 a b b 0hay a b a b ≥  ≥ ⇔ <  ≤ − ∨ ≥  0baba 22 ≤−⇔≤ c. Mũ : .1a0neáuy,1aneáuy,0y,Rx,ay x <<↓>↑>∈= 0 m/ n m m n m nn m n m n m n m.n n n n n n n m n a 1; a 1/ a ; a .a a a /a a ; (a ) a ; a / b (a/ b) a .b (ab) ; a a (m n,0 a 1) a = 1 − + − = = = = = = = = ⇔ = < ≠ ∨ α =α <<> >< ⇔< a log nm a, )1a0neáu(nm )1aneáu(nm aa d. log : y = log a x , x > 0 , 0 < a ≠ 1, y ∈ R y↑ nếu a > 1, y↓ nếu 0 < a < 1, α = log a a α log a (MN) = log a M + log a N ( ⇐ ) log a (M/N) = log a M – log a N ( ⇐ ) 2 aaa 2 a MlogMlog2,Mlog2Mlog == (⇒) log a M 3 = 3log a M, log a c = log a b.log b c log b c = log a c/log a b, Mlog 1 Mlog a a α = α log a (1/M) = – log a M, log a M = log a N ⇔ M = N a a 0 M N(neáua 1) log M log N M N 0(neáu0 a 1) < < > < ⇔ > > < < Khi làm toán log, nếu miền xác định nới rộng : dùng điều kiện chặn lại, tránh dùng công thức làm thu hẹp miền xác định. Mất log phải có điều kiện. 4. Đổi biến : a. Đơn giản : Rxlogt,0at,0xt,0xt,0xt,Rbaxt a x2 ∈=>=≥=≥=≥=∈+= N?u trong ?? bài có ?i?u ki?n c?a x, ta chuy?n sang ?i?u ki?n c?a t b?ng cách bi?n ??i tr?c ti?p b?t ??ng th?c. b. Hàm số : t = f(x) dùng BBT để tìm điều kiện của t. Nếu x có thêm điều kiện, cho vào miền xác định của f. c. Lượng giác : t = sinx, cosx, tgx, cotgx. Dùng phép chiếu lượng giác để tìm điều kiện của t. d. Hàm số hợp : từng bước làm theo các cách trên. 5. Xét dấu : a. Đa thức hay phân thức hữu tỷ, dấu A/B giống dấu A.B; bên phải cùng dấu hệ số bậc cao nhất; qua nghiệm đơn (bội lẻ) : đổi dấu; qua nghiệm kép (bội chẵn) : không đổi dấu. b. Biểu thức f(x) vô tỷ : giải f(x) < 0 hay f(x) > 0. 3 http://hoiphuonghoangvn.7forum.info Phạm Thuỳ Linh – 12A10- THPT KT(06 – 09) c. Biểu thức f(x) vô tỷ mà cách b không làm được : xét tính liên tục và đơn điệu của f, nhẩm 1 nghiệm của pt f(x) = 0, phác họa đồ thị của f , suy ra dấu của f. 6. So sánh nghiệm phương trình bậc 2 với α : f(x) = ax 2 + bx + c = 0 (a ≠ 0) * S = x 1 + x 2 = – b/a ; P = x 1 x 2 = c/a Dùng S, P để tính các biểu thức đối xứng nghiệm. Với đẳng thức g(x 1 ,x 2 ) = 0 không đối xứng, giải hệ pt :      = += = 21 21 x.xP xxS 0g Biết S, P thỏa S 2 – 4P ≥ 0, tìm x 1 , x 2 từ pt : X 2 – SX + P = 0 * Dùng ∆, S, P để so sánh nghiệm với 0 : x 1 < 0 < x 2 ⇔ P < 0, 0 < x 1 < x 2 ⇔      > > >∆ 0S 0P 0 x 1 < x 2 < 0 ⇔      < > >∆ 0S 0P 0 * Dùng ∆, af(α), S/2 để so sánh nghiệm với α : x 1 < α < x 2 ⇔ af(α) < 0 α < x 1 < x 2 ⇔      <α >α >∆ 2/S 0)(f.a 0 ; x 1 < x 2 < α ⇔      α< >α >∆ 2/S 0)(f.a 0 α < x 1 < β < x 2 ⇔ a.f( ) 0 a.f( ) 0 β <   α >   α < β  ; x 1 < α < x 2 < β ⇔      β<α >β <α 0)(f.a 0)(f.a 7. Phương trình bậc 3 : a. Viête : ax 3 + bx 2 + cx + d = 0 x 1 + x 2 + x 3 = – b/a , x 1 x 2 + x 1 x 3 + x 2 x 3 = c/a , x 1 .x 2 .x 3 = – d/a Biết x 1 + x 2 + x 3 = A , x 1 x 2 + x 1 x 3 + x 2 x 3 = B , x 1 .x 2 .x 3 = C thì x 1 , x 2 , x 3 là 3 nghiệm phương trình : x 3 – Ax 2 + Bx – C = 0 b. Số nghiệm phương trình bậc 3 : • x = α ∨ f(x) = ax 2 + bx + c = 0 (a ≠ 0) : 3 nghiệm phân biệt ⇔    ≠α >∆ 0)(f 0 2 nghiệm phân biệt ⇔    ≠α =∆ ∨    =α >∆ 0)(f 0 0)(f 0 1 nghiệm ⇔ ( ) ∆  ∆  α  = 0 < 0hay f = 0 • Phương trình bậc 3 không nhẩm được 1 nghiệm, m tách được sang 1 vế : dùng sự tương giao giữa (C) : y = f(x) và (d) : y = m. • Phương trình bậc 3 không nhẩm được 1 nghiệm, m không tách được sang 1 vế : dùng sự tương giao giữa (C m ) : y = f(x, m) và (Ox) : y = 0 3 nghiệm ⇔    < >∆ 0y.y 0 CTCÑ 'y 4 http://hoiphuonghoangvn.7forum.info Phạm Thuỳ Linh – 12A10- THPT KT(06 – 09) 2 nghiệm ⇔    = >∆ 0y.y 0 CTCÑ 'y 1 nghiệm ⇔ ∆ y' ≤ 0 ∨    > >∆ 0y.y 0 CTCÑ 'y c. Phương trình bậc 3 có 3 nghiệm lập thành CSC : ⇔    = >∆ 0y 0 uoán 'y d. So sánh nghiệm với α : • x = x o ∨ f(x) = ax 2 + bx + c = 0 (a ≠ 0) : so sánh nghiệm phương trình bậc 2 f(x) với α. • Không nhẩm được 1 nghiệm, m tách được sang 1 vế : dùng sự tương giao của f(x) = y: (C) và y = m: (d) , đưa α vào BBT. • Không nhẩm được 1 nghiệm, m không tách được sang 1 vế : dùng sự tương giao của (C m ) : y = ax 3 + bx 2 + cx + d (có m) ,(a > 0) và (Ox) α < x 1 < x 2 < x 3 ⇔ y' CÑ CT CÑ 0 y .y 0 y( ) 0 x ∆ >   <   α <   α <  x 1 < α < x 2 < x 3 ⇔        <α >α < >∆ CT CTCÑ 'y x 0)(y 0y.y 0 x 1 < x 2 < α < x 3 ⇔        α< <α < >∆ CÑ CTCÑ 'y x 0)(y 0y.y 0 x 1 < x 2 < x 3 < α ⇔ y' CÑ CT CT 0 y .y 0 y( ) 0 x ∆ >   <   α >   < α  8. Phương trình bậc 2 có điều kiện : f(x) = ax 2 + bx + c = 0 (a ≠ 0), x ≠ α 2 nghiệm ⇔    >∆ ≠α 0 0)(f , 1 nghiệm ⇔    ≠α =∆    =α >∆ 0)(f 0 0)(f 0 Vô nghiệm ⇔ ∆ < 0 ∨    =α =∆ 0)(f 0 Nếu a có tham số, xét thêm a = 0 với các trường hợp 1 nghiệm, VN. 9. Phương trình bậc 4 : 5 http://hoiphuonghoangvn.7forum.info α x 1 x 2 x 3 α x 1 x 2 x 3 α x 1 x 2 x 3 α x 1 x 2 x 3 Phạm Thuỳ Linh – 12A10- THPT KT(06 – 09) a. Trùng phương : ax 4 + bx 2 + c = 0 (a ≠ 0) ⇔    = ≥= 0)t(f 0xt 2 t = x 2 ⇔ x = ± t 4 nghiệm ⇔      > > >∆ 0S 0P 0 ; 3 nghiệm ⇔    > = 0S 0P 2 nghiệm ⇔    > =∆ < 02/S 0 0P ; 1 nghiệm ⇔    = =∆    < = 02/S 0 0S 0P VN ⇔ ∆ < 0 ∨      < > ≥∆ 0S 0P 0 ⇔ ∆ < 0 ∨ 0 0 P S   >   <  4 nghiệm CSC ⇔    = << 12 21 t3t tt0 Giải hệ pt :      = += = 21 21 12 t.tP ttS t9t b. ax 4 + bx 3 + cx 2 + bx + a = 0. Đặt t = x + x 1 . Tìm đk của t bằng BBT : 2t ≥ c. ax 4 + bx 3 + cx 2 – bx + a = 0. Đặt t = x – x 1 . Tìm đk của t bằng BBT : t ∈ R. d. (x + a)(x + b)(x + c)(x + d) = e với a + b = c + d. Đặt : t = x 2 + (a + b)x. Tìm đk của t bằng BBT. e. (x + a) 4 + (x + b) 4 = c. Đặt : 2 ba xt + += , t ∈ R. 10. Hệ phương trình bậc 1 :    =+ =+ 'cy'bx'a cbyax . Tính : D = 'b b 'a a , D x = 'b b 'c c , D y = 'c c 'a a D ≠ 0 : nghiệm duy nhất x = D x /D , y = D y /D. D = 0, D x ≠ 0 ∨ D y ≠ 0 : VN D = D x = D y = 0 : VSN hay VN (giải hệ với m đã biết). 11. Hệ phương trình đối xứng loại 1 : Từng phương trình đối xứng theo x, y. Đạt S = x + y, P = xy. ĐK : S 2 – 4P ≥ 0. Tìm S, P. Kiểm tra đk S 2 – 4P ≥ 0; Thế S, P vào pt : X 2 – SX + P = 0, giải ra 2 nghiệm là x và y. (α, β) là nghiệm thì (β, α) cũng là nghiệm; nghiệm duy nhất ⇒ α = β ⇒ m = ? Thay m vào hệ, giải xem có duy nhất nghiệm không. 12. Hệ phương trình đối xứng loại 2 : Phương trình này đối xứng với phương trình kia. Trừ 2 phương trình, dùng các hằng đẳng thức đưa về phương trình tích A.B = 0. Nghiệm duy nhất làm như hệ đối xứng loại 1. 6 http://hoiphuonghoangvn.7forum.info Phạm Thuỳ Linh – 12A10- THPT KT(06 – 09) 13. Hệ phương trình đẳng cấp :    =++ =++ 'dy'cxy'bx'a dcybxyax 22 22 Xét y = 0. Xét y ≠ 0 : đặt x = ty, chia 2 phương trình để khử t. Còn 1 phương trình theo y, giải ra y, suy ra t, suy ra x. Có thể xét x = 0, xét x ≠ 0, đặt y = tx. 14. Bất phương trình, bất đẳng thức : * Ngoài các bất phương trình bậc 1, bậc 2, dạng cơ bản của ., , log, mũ có thể giải trực tiếp, các dạng khác cần lập bảng xét dấu. Với bất phương trình dạng tích AB < 0, xét dấu A, B rồi AB. * Nhân bất phương trình với số dương : không đổi chiều số âm : có đổi chiều Chia bất phương trình : tương tự. * Chỉ được nhân 2 bất pt vế theo vế , nếu 2 vế không âm. * Bất đẳng thức Côsi : a, b ≥ 0 : ab 2 ba ≥ + Dấu = xảy ra chỉ khi a = b. a, b, c ≥ 0 : 3 abc 3 cba ≥ ++ Dấu = xảy ra chỉ khi a = b = c. * Bất đẳng thức Bunhiacốpxki : a, b, c, d (ac + bd) 2 ≤ (a 2 + b 2 ).(c 2 + d 2 ); Dấu = xảy ra chỉ khi a/b = c/d 15. Bài toán tìm m để phương trình có k nghiệm : Nếu tách được m, dùng sự tương giao của (C) : y = f(x) và (d) : y = m. Số nghiệm bằng số điểm chung. Nếu có điều kiện của x ∈ I, lập BBT của f với x ∈ I. 16. Bài toán tìm m để bất pt vô nghiệm, luôn luôn nghiệm, có nghiệm x ∈ I : Nếu tách được m, dùng đồ thị, lập BBT với x ∈ I. f(x) ≤ m : (C) dưới (d) (hay cắt) f(x) ≥ m : (C) trên (d) (hay cắt) III- LƯỢNG GIÁC 1. Đường tròn lượng giác : Trên đường tròn lượng giác, góc α đồng nhất với cung AM, đồng nhất với điểm M. Ngược lại, 1 điểm trên đường tròn lượng giác ứng với vô số các số thực x + k2π. Trên đường tròn lượng giác, nắm vững các góc đặc biệt : bội của 6 π ( 3 1 cung phần tư) và 4 π ( 2 1 cung phần tư) x = α + n k2 π : α là 1 góc đại diện, n : số điểm cách đều trên đường tròn lượng giác. 2. Hàm số lượng giác : 3. Cung liên kết : * Đổi dấu, không đổi hàm : đối, bù, hiệu π (ưu tiên không đổi dấu : sin bù, cos đối, tg cotg hiệu π). * Đổi hàm, không đổi dấu : phụ * Đổi dấu, đổi hàm : hiệu 2 π (sin lớn = cos nhỏ : không đổi dấu). 4. Công thức : a. Cơ bản : đổi hàm, không đổi góc. b. Cộng : đổi góc a ± b, ra a, b. c. Nhân đôi : đổi góc 2a ra a. d. Nhân ba : đổi góc 3a ra a. e. Hạ bậc : đổi bậc 2 ra bậc 1. Công thức đổi bậc 3 ra bậc 1 suy từ công thức nhân ba. 7 http://hoiphuonghoangvn.7forum.info 2− π 2π 0 + 2π 0 2− π α 0 A x+k2 M cos chiếu sin M cotg chiếu xuyên tâm tg M Phạm Thuỳ Linh – 12A10- THPT KT(06 – 09) f. Đưa về 2 a tgt = : đưa lượng giác về đại số. g. Tổng thành tích : đổi tổng thành tích và đổi góc a, b thành (a ± b) / 2. h. Tích thành tổng : đổi tích thành tổng và đổi góc a, b thành a ± b. 5. Phương trình cơ bản : sinα = 0⇔ cosα = – 1 hay cosα = 1⇔ α = kπ, sinα = 1 ⇔ α = 2 π + k2π; sinα = –1 ⇔ α = – 2 π + k2π, cosα = 0 ⇔ sinα = –1 hay sinα = 1 ⇔ α = 2 π + kπ, cosα = 1 ⇔ α = k2π, cosα = – 1 ⇔ α = π + k2π sinu = sinv ⇔ u = v + k2π ∨ u = π – v + k2π cosu = cosv ⇔ u = ± v + k2π tgu = tgv ⇔ u = v + kπ cotgu = cotgv ⇔ u = v + kπ 6. Phương trình bậc 1 theo sin và cos : asinu + bcosu = c * Điều kiện có nghiệm : a 2 + b 2 ≥ c 2 * Chia 2 vế cho 22 ba + , dùng công thức cộng đưa về phương trình cơ bản. (cách khác : đưa về phương trình bậc 2 theo 2 u tgt = ) 7. Phương trình đối xứng theo sin, cos : Đưa các nhóm đối xứng về sin + cos và sin.cos. Đặt : t = sinu + cosu = 2 t 1 2 sin u , 2 t 2,sinu.cosu 4 2 π −   + − ≤ ≤ =  ÷   8. Phương trình chứa sinu + cosu và sinu.cosu : Đặt : 2 1 2 0 2 4 2 t t sinu cos u sin u , t ,sinu.cos u π −   = + = + ≤ ≤ =  ÷   9. Phương trình chứa sinu – cosu và sinu.cosu : Đặt : π −   = − = − − ≤ ≤ =  ÷   2 1 t t sinu cosu 2sin u , 2 t 2,sinu.cosu 4 2 10. Phương trình chứa sinu – cosu và sinu.cosu : Đặt : 2 1 2 0 2 4 2 t t sinu cos u sin u , t ,sin u.cos u π −   = − = − ≤ ≤ =  ÷   11. Phương trình toàn phương (bậc 2 và bậc 0 theo sinu và cosu) : Xét cosu = 0; xét cosu ≠ 0, chia 2 vế cho cos 2 u, dùng công thức 1/cos 2 u = 1 + tg 2 u, đưa về phương trình bậc 2 theo t = tgu. 12. Phương trình toàn phương mở rộng : * Bậc 3 và bậc 1 theo sinu và cosu : chia 2 vế cho cos 3 u. * Bậc 1 và bậc – 1 : chia 2 vế cho cosu. 13. Giải phương trình bằng cách đổi biến : Nếu không đưa được phương trình về dạng tích, thử đặt : * t = cosx : nếu phương trình không đổi khi thay x bởi – x. * t = sinx : nếu phương trình không đổi khi thay x bởi π – x. * t = tgx : nếu phương trình không đổi khi thay x bởi π + x. * t = cos2x : nếu cả 3 cách trên đều đúng * t = tg 2 x : nếu cả 3 cách trên đều không đúng. 14. Phương trình đặc biệt : *    = = ⇔=+ 0v 0u 0vu 22 8 http://hoiphuonghoangvn.7forum.info Phạm Thuỳ Linh – 12A10- THPT KT(06 – 09) *    = = ⇔      ≥ ≤ = Cv Cu Cv Cu vu *    = = ⇔      +=+ ≤ ≤ Bv Au BAvu Bv Au * sinu.cosv = 1 ⇔    −= −= ∨    = = 1vcos 1usin 1vcos 1usin * sinu.cosv = – 1 ⇔    = −= ∨    −= = 1vcos 1usin 1vcos 1usin Tương tự cho : sinu.sinv = ± 1, cosu.cosv = ± 1. 15. Hệ phương trình : Với F(x) là sin, cos, tg, cotg a. Dạng 1 :    =± =± )2(nyx )1(m)y(F)x(F . Dùng công thức đổi + thành nhân, thế (2) vào (1) đưa về hệ phương trình :    =− =+ byx ayx b. Dạng 2 :    =± = nyx m)y(F).x(F . Tương tự dạng 1, dùng công thức đổi nhân thành +. c. Dạng 3 :    =± = nyx m)y(F/)x(F . Dùng tỉ lệ thức : db ca db ca d c b a − − = + + ⇔= biến đổi phương trình (1) rồi dùng công thức đổi + thành x. d. Dạng khác : tìm cách phối hợp 2 phương trình, đưa về các pt cơ bản. 16. Toán ∆ : * Luôn có sẵn 1 pt theo A, B, C : A + B + C = π * A + B bù với C, (A + B)/2 phụ với C/2. * A, B, C ∈ (0, π) ; A/2, B/2, C/2 ∈ (0, π/2) A + B ∈ (0, π) ; (A + B)/2 ∈ (0, π/2) ; A – B ∈ (– π, π) , (A – B)/2 ∈ (– π/2, π/2) Dùng các tính chất này để chọn k. * Đổi cạnh ra góc (đôi khi đổi góc ra cạnh) : dùng định lý hàm sin : a = 2RsinA hay định lý hàm cos : a 2 = b 2 + c 2 – 2bc.cosA * pr R4 abc Csinab 2 1 ah 2 1 S a ==== )cp)(bp)(ap(p −−−= * Trung tuyến : 222 a ac2b2 2 1 m −+= * Phân giác : ℓ a = cb 2 A cosbc2 + IV- TÍCH PHÂN 1. Định nghĩa, công thức, tính chất : * F là 1 nguyên hàm của f ⇔ f là đạo hàm của F. Họ tất cả các nguyên hàm của f : 9 http://hoiphuonghoangvn.7forum.info Phạm Thuỳ Linh – 12A10- THPT KT(06 – 09) ∫ dx)x(f = F(x) + C (C ∈ R) * α+ α = + = + α + ∫ ∫ 1 u du u C ; u du C 1 , α ≠ – 1 u u du ln u C; e du e C; u = + = + ∫ ∫ ∫ += Caln/adua uu sin udu cos u C= − + ∫ ; ∫ += Cusinuducos ∫ +−= Cgucotusin/du 2 ; ∫ += Ctguucos/du 2 * = = − ∫ b b a a f(x)dx F(x) F(b) F(a) * ∫ ∫ ∫ ∫∫∫ +=−== b a c a b a c b a b a a ,;0 ∫ ∫∫∫∫ =+=+ b a b a b a b a b a fkkf;gf)gf( 2. Tích phân từng phần : udv uv vdu= − ∫ ∫ Thường dùng khi tính tích phân các hàm hỗn hợp. a. ∫ ∫ ∫ = nnnxn xu:xcosx;xsinx,ex b. ∫ = xlnu:xlnx n c. ∫ ∫ == dxedvhayeu:xcose,xsine xxxx từng phần 2 lần, giải phương trình ẩn hàm ʃ 3. Các dạng thường gặp : a. ∫ + xcos.xsin 1n2m : u = sinx. ∫ + xsin.xcos 1n2m : u = cosx. ∫ xcos.xsin n2m2 : hạ bậc về bậc 1 b. ∫ xcos/xtg n2m2 : u = tgx (n ≥ 0) ∫ xsin/xgcot n2m2 : u = cotgx (n ≥ 0) c. ∫ chứa a 2 – u 2 : u = asint ∫ chứa u 2 – a 2 : u = a/cost ∫ chứa a 2 + u 2 : u = atgt d. ∫ )xcos,x(sinR , R : hàm hữu tỷ R(–sinx, cosx) = – R(sinx, cosx) : u = cosx R(sinx, –cosx) = – R(sinx, cosx) : u = sinx R(–sinx,–cosx) = R(sinx, cosx) : u = tgx ∨ u = cotgx R đơn giản : 2 x tgu = 10 http://hoiphuonghoangvn.7forum.info [...]... đường chuẩn y = p/2; bán kính qua tiêu MF = p/2 – y M; tâm sai e = 1, tiếp tuyến với (P) tại M : phân đơi tọa độ; (P) tx (d) : Ax + By + C = 0 ⇔ pA2 = – 2BC CHÚ Ý : * Cần có quan điểm giải tích khi làm tốn hình giải tích : đặt câu hỏi cần tìm gì? (điểm trong mp M(x o,yo) : 2 ẩn ; điểm trong khơng gian (3 ẩn); đường thẳng trong mp Ax + By + C = 0 : 3 ẩn A, B, C - thực ra là 2 ẩn; đường tròn : 3 ẩn a,... g(x) dx x=b y=b g(y) f(y) y=a β/ b SD = ∫ f(y) − g(y) dy a Với trường hợp α) : nếu biên trên hay biên dưới bị gãy, ta cắt D bằng các đường thẳng đứng ngay chỗ gãy Với trường hợp β) : nếu biên phải hay biên trái bị gãy, ta cắt D bằng các đường ngang ngay chỗ gãy Chọn tính ∫ theo dx hay dy để ∫ dễ tính tốn hay D ít bị chia cắt Cần giải các hệ phương trình tọa độ giao điểm Cần biết vẽ đồ thị các hình... chung, giải tìm xA, xB, suy ra yA, yB 14 Tìm điểm M ∈ (C) : y = ax + b + c   y M = ax M + b + dx M + e   xM , yM ∈ Z  ⇔ ⇔ c dx + e có tọa độ ngun (a, b, c, d, e ∈ Z) : giải hệ c  y M = ax M + b +   dx M + e  c  xM , ∈Z  dx M + e  c   y M = ax M + b + dx M + e   x M ∈ Z, dx M + e = ước số của c  15 Tìm min, max của hàm số y = f(x) Lập BBT, suy ra miền giá trị và min, max 16 Giải bất... trung điểm AB ⇔ x M = A , yM = A 2 2 x + x B + xC  xM = A  3 M : trọng tâm ∆ABC ⇔  y A + y B + yC y M = 3  M chia AB theo tỉ số k ⇔ (tương tự cho vectơ 3 chiều) * Vectơ 3 chiều có thêm tích có hướng và tích hỗn hợp : / [ v = (a, b, c), v = (a' , b' , c' ) b c c a a b   v, v / =  / / , / / , / /  b c c a a b    ] r r r r r r [ v ,v / ] = v v / sin( v ,v / ) *   [v, v / ] ⊥ v, v / r... : hx + k = 1 u ∫ R(x, (ax + b) /(cx + d) , R là hàm hữu tỷ : u = ∫ chứa (a + bx ) : thử đặt u = a + bx k m/n n (ax + b) /(cx + d ) k Tích phân hàm số hữu tỷ : ∫ P(x) / Q(x) : bậc P < bậc Q Đưa Q về dạng tích của x + a, (x + a)n, ax2 + bx + c (∆ < 0) Đưa P/Q về dạng tổng các phân thức đơn giản, dựa vào các thừa số của Q : A A A2 An , (x + a)n → 1 + + + x+a x + a (x + a)2 (x + a)n x+a→ ax 2 + bx +... log, , , lượng giác : đổi biến; cần biết mỗi biến mới t được mấy biến cũ x; cần biết đk của t để cắt bớt đồ thị f 12 QUỸ TÍCH ĐIỂM DI ĐỘNG M(xo, yo) : Dựa vào tính chất điểm M, tìm 2 đẳng thức chứa x o, yo, m; khử m, được F(xo, yo) = 0; suy ra M ∈ (C) : F(x, y) = 0; giới hạn quỹ tích : M tồn tại ⇔ m ? ⇔ xo ? (hay yo ?) 16 http://hoiphuonghoangvn.7forum.info Phạm Thuỳ Linh – 12A10- THPT KT(06 – 09)... tđx là gốc tọa độ I b CM hàm bậc 4 có trục đx // (Oy) : giải pt y / = 0; nếu x = a là nghiệm duy nhất hay là nghiệm chính giữa của 3 nghiệm : đổi tọa độ x = X + a, y = Y; thế vào hàm số : Y = F(X); cm F(–X) = F(X); suy ra F là hàm chẵn, đồ thị có trục đối xứng là trục tung X = 0, tức x = a c Tìm trên (C) : y = f(x) cặp điểm M, N đối xứng qua I : giải hệ 4 pt 4 ẩn :  x M + x N = 2x I  y + y = 2y  M... bx + c  5 Tính diện tích hình phẳng : a D giới hạn bởi x = a, x = b, (Ox), (C) : y = f(x) : b f(x) : phân thức hữu tỉ : lập BXD f(x) trên [a,b] để mở .; f(x) : hàm lượng giác : xét dấu f(x) trên cung [a, b] của đường tròn lượng giác D giới hạn bởi x = a, x = b , (C) : y = f(x) b SD = ∫ f (x) dx a b (C') : y = g(x) : SD = ∫ f (x) − g(x) dx a c Xét dấu f(x) – g(x) như trường hợp a/ D giới hạn bởi... min, max của hàm số y = f(x) Lập BBT, suy ra miền giá trị và min, max 16 Giải bất phương trình bằng đồ thị : x . 2 a tgt = : đưa lượng giác về đại số. g. Tổng thành tích : đổi tổng thành tích và đổi góc a, b thành (a ± b) / 2. h. Tích thành tổng : đổi tích thành tổng và đổi góc a, b thành a ± b. 5. Phương. 09) I- GIẢI TÍCH TỔ HỢP 1. Giai thừa : n! = 1.2 n 0! = 1 n! /(n – k)! = (n – k + 1).(n – k + 2) n 2. Nguyên tắc cộng : Trường hợp 1 có m cách chọn, trường hợp 2 có n cách chọn; mỗi cách chọn đều. nhân; hoán vị (xếp, không bốc), tổ hợp (bốc, không xếp), chỉnh hợp (bốc rồi xếp). * Áp dụng sơ đồ nhánh để chia trường hợp , tránh trùng lắp hoặc thiếu trường hợp. * Với bài toán tìm số cách

Ngày đăng: 17/09/2014, 20:21

Từ khóa liên quan

Tài liệu cùng người dùng

Tài liệu liên quan