1. Trang chủ
  2. » Khoa Học Tự Nhiên

50 đề bồi dưỡng toán 8

39 393 7

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 39
Dung lượng 1,17 MB

Nội dung

50 đề bồi dỡng Toán 8 đề 1 (43) Câu 1: Cho x = 2 2 2 2 b c a bc + ; y = 2 2 2 2 ( ) ( ) a b c b c a + Tính giá trị P = x + y + xy Câu 2: Giải phơng trình: a, 1 a b x+ = 1 a + 1 b + 1 x (x là ẩn số) b, 2 2 ( )(1 )b c a x a + + + 2 2 ( )(1 )c a b x b + + + 2 2 ( )(1 )a b c x c + + = 0 (a,b,c là hằng số và đôi một khác nhau) Câu 3: Xác định các số a, b biết: 3 (3 1) ( 1) x x + + = 3 ( 1) a x + + 2 ( 1) b x + Câu 4: Chứng minh phơng trình: 2x 2 4y = 10 không có nghiệm nguyên. Câu 5: Cho ABC; AB = 3AC Tính tỷ số đờng cao xuất phát từ B và C Đề 2 (44) Câu 1: Cho a,b,c thoả mãn: a b c c + = b c a a + = c a b b + Tính giá trị M = (1 + b a )(1 + c b )(1 + a c ) Câu 2: Xác định a, b để f(x) = 6x 4 7x 3 + ax 2 + 3x +2 Chia hết cho y(x) = x 2 x + b Câu 3: Giải PT: a, (x-4) (x-5) (x-6) (x-7) = 1680. Lê Anh Tuấn Trờng THCS Vĩnh Khúc 1 50 đề bồi dỡng Toán 8 b, 4x 2 + 4y 4xy +5y 2 + 1 = 0 Câu 4: Tìm giá trị lớn nhất của phân số mà tử số là một số có 3 chữ số mà mẫu là tổng các chữ số của nó. Câu 5: Cho ABC cân tại A, trên AB lấy D, trên AC lấy E sao cho: AD = EC = DE = CB. a, Nếu AB > 2BC. Tính góc à A của ABCV b, Nếu AB < BC. Tính góc à A của HBCV . đề 3 (45) Câu 1: Phân tích thành nhân tử: a, a 3 + b 3 + c 3 3abc b, (x-y) 3 +(y-z) 3 + (z-x) 3 Câu 2: Cho A = 2 2 2 (1 ) 1 x x x + : 3 3 1 1 ( )( ) 1 1 x x x x x x + + + a, Rút gọn A b, Tìm A khi x= - 1 2 c, Tìm x để 2A = 1 Câu 3: a, Cho x+y+z = 3. Tìm giá trị nhỏ nhất của M = x 2 + y 2 + z 2 b, Tìm giá trị lớn nhất của P = 2 ( 10) x x + Câu 4: a, Cho a,b,c > 0, CMR: 1 < a a b+ + b b c+ + c c a+ < 2 b, Cho x,y 0 CMR: 2 2 x y + 2 2 y x x y + y x Câu 5: Cho ABCV đều có độ dài cạnh là a, kéo dài BC một đoạn CM =a Lê Anh Tuấn Trờng THCS Vĩnh Khúc 2 50 đề bồi dỡng Toán 8 a, Tính số đo các góc ACMV b, CMR: AM AB c, Kéo dài CA đoạn AN = a, kéo dài AB đoạn BP = a. CMR MNPV đều. đề 4 (46) Câu 1: Phân tích thành nhân tử: a, a 8 + a 4 +1 b, a 10 + a 5 +1 Câu 2: a, Cho a+b+c = 0, Tính giá trị của biểu thức: A = 2 2 2 1 b c a+ + 2 2 2 1 c a b+ + 2 2 2 1 a b c+ b, Cho biểu thức: M = 2 2 3 2 15 x x x + + Rút gọn M + Tìm x Z để M đạt giá trị nguyên. Câu 3: a, Cho abc = 1 và a 3 > 36, CMR: 2 3 a + b 2 + c 2 > ab + bc + ca b, CMR: a 2 + b 2 +1 ab + a + b Câu 4: a, Tìm giá trị nhỏ nhất của A = 2x 2 + 2xy + y 2 - 2x + 2y +1 b, Cho a+b+c= 1, Tìm giá trị nhỏ nhất P = a 3 + b 3 + c 3 + a 2 (b+c) + b 2 (c+a) + c 2 (a+b) Câu 5: a, Tìm x,y,x Z biết: x 2 + 2y 2 + z 2 - 2xy 2y + 2z +2 = 0 b, Tìm nghiệm nguyên của PT: 6x + 15y + 10z = 3 Câu 6: Cho ABCV . H là trực tâm, đờng thẳng vuông góc với AB tại B, với AC tại C cắt nhau tại D. a, CMR: Tứ giác BDCH là hình bình hành. b, Nhận xét mối quan hệ giữa góc à A và à D của tứ giác ABDC. Đề 5 (47) Lê Anh Tuấn Trờng THCS Vĩnh Khúc 3 50 đề bồi dỡng Toán 8 Câu 1: Phân tích thành nhân tử: a, (x 2 x +2) 2 + (x-2) 2 b, 6x 5 +15x 4 + 20x 3 +15x 2 + 6x +1 Câu 2: a, Cho a, b, c thoả mãn: a+b+c = 0 và a 2 + b 2 + c 2 = 14. Tính giá trị của A = a 4 + b 4 + c 4 b, Cho a, b, c 0. Tính giá trị của D = x 2003 + y 2003 + z 2003 Biết x,y,z thoả mãn: 2 2 2 2 2 2 x y z a b c + + + + = 2 2 x a + 2 2 y b + 2 2 z c Câu 3: a, Cho a,b > 0, CMR: 1 a + 1 b 4 a b+ b, Cho a,b,c,d > 0 CMR: a d d b + + d b b c + + b c c a + + c a a d + 0 Câu 4: a, Tìm giá trị lớn nhất: E = 2 2 2 2 x xy y x xy y + + + với x,y > 0 b, Tìm giá trị lớn nhất: M = 2 ( 1995) x x + với x > 0 Câu 5: a, Tìm nghiệm Z của PT: xy 4x = 35 5y b, Tìm nghiệm Z của PT: x 2 + x + 6 = y 2 Câu 6: Cho ABCV M là một điểm miền trong của ABCV . D, E, F là trung điểm AB, AC, BC; A, B, C là điểm đối xứng của M qua F, E, D. a, CMR: ABAB là hình bình hành. b, CMR: CC đi qua trung điểm của AA Đề 6 (48) Câu 1: Cho a x y+ = 13 x z+ và 2 169 ( )x z+ = 27 ( )(2 )z y x y z + + Tính giá trị của biểu thức A = 3 2 2 12 17 2 2 a a a a + Lê Anh Tuấn Trờng THCS Vĩnh Khúc 4 50 đề bồi dỡng Toán 8 Câu 2: Cho x 2 x = 3, Tính giá trị của biểu thức M = x 4 - 2x 3 + 3x 2 - 2x + 2 Câu 3: a, Tìm giá trị nhỏ nhất của M = x(x+1)(x+2)(x+3) b, Cho x,y > 0 và x + y = 0, Tìm giá trị nhỏ nhất của N = 1 x + 1 y Câu 4: a, Cho 0 a, b, c 1 CMR: a 2 + b 2 + c 2 1+ a 2 b + b 2 c + c 2 a b, Cho 0 <a 0 <a 1 < < a 1997 CMR: 0 1 1997 2 5 8 1997 a a a a a a a + + + + + + + < 3 Câu 5: a,Tìm a để PT 4 3x = 5 a có nghiệm Z + b, Tìm nghiệm nguyên dơng của PT: 2 x x y z+ + + 2 y y x z+ + + 2 z z x y+ + = 3 4 Câu 6: Cho hình vuông ABCD, trên CD lấy M, nối M với A. Kẻ phân giác góc ã MAB cắt BC tại P, kẻ phân giác góc ã MAD cắt CD tại Q CMR PQ AM đề 7 (49) Câu 1: Cho a, b, c khác nhau thoả mãn: 2 2 2 2 b c a bc + + 2 2 2 2 c a b ac + + 2 2 2 2 a b c ab + = 1 Thì hai phân thức có giá trị là 1 và 1 phân thức có giá trị là -1. Câu 2: Cho x, y, z > 0 và xyz = 1 Tìm giá trị lớn nhất A = 3 3 1 1x y+ + + 3 3 1 1y z+ + + 3 3 1 1z x+ + Câu 3: Cho M = a 5 5a 3 +4a với a Z Lê Anh Tuấn Trờng THCS Vĩnh Khúc 5 50 đề bồi dỡng Toán 8 a, Phân tích M thành nhân tử. b, CMR: M M 120 a Z Câu 4: Cho N 1, n N a, CMR: 1+ 2+ 3+ +n = ( 1) 2 n n + b, CMR: 1 2 +2 2 + 3 2 + +n 2 = ( 1)(2 1) 6 n n n+ + Câu 5: Tìm nghiệm nguyên của PT: x 2 = y(y+1)(y+2)(y+3) Câu 6: Giải BPT: 2 2 2 1 x x x + + + > 2 4 5 2 x x x + + + - 1 Câu 7: Cho 0 a, b, c 2 và a+b+c = 3 CMR: a 2 + b 2 + c 2 5 Câu 8: Cho hình chữ nhật ABCD có chiều dài BC gấp 2 lần chiều rộng CD, từ C kẻ Cx tạo với CD một góc 15 0 cắt AD tại E CMR: BCEV cân. đề 8 (50) Câu 1: Cho A = 3 2 3 2 2 1 2 2 1 n n n n n + + + + a, Rút gọn A b, Nếu n Z thì A là phân số tối giản. Câu 2: Cho x, y > 0 và x+y = 1 Tìm giá trị lớn nhất của P = (1 - 2 1 x )(1 - 2 1 y ) Câu 3: a, Cho a, b ,c là độ dài 3 cạnh của 1 tam giác CMR: a 2 + b 2 + c 2 < 2(ab+bc+ca) b, Cho 0 a, b , c 1 Lê Anh Tuấn Trờng THCS Vĩnh Khúc 6 50 đề bồi dỡng Toán 8 CMR: a + b 2 +c 3 ab bc ca 1 Câu 4: Tìm x, y, z biết: x+yz = y+z-x = z+x-y = xyz Câu 5: Cho n Z và n 1 CMR: 1 3 + 2 3 +3 3 + +n 3 = 2 2 ( 1) 4 n n+ + Câu 6: Giải bất phơng trình: (x-1)(3x+2) > 3x(x+2) + 5 Câu 7: Chia tập N thành các nhóm: 1; (2,3); (4,5,6) , nhóm n gồm n số hạng. Tính tổng các số trong nhóm 94. Câu 8: Cho hình vuông ABCD. M, N là trung điểm AB, BC, K là giao điểm của CM và DN CMR: AK = BC đề 9 (51) Câu 1: Cho M = a b c+ + b a c+ + c a b+ ; N = 2 a b c+ + 2 b a c+ + 2 c a b+ a, CMR: Nếu M = 1 thì N = 0 b, Nếu N = 0 thì có nhất thiết M = 1 không? Câu 2: Cho a, b, c > 0 và a+b+c = 2 CMR: 2 a b c+ + 2 b a c+ + 2 c a b+ 1 Câu 3: Cho x, y, z 0 và x + 5y = 1999; 2x + 3z = 9998 Tìm giá trị lớn nhất của M = x + y + z Câu 4: a, Tìm các số nguyên x để x 2 2x -14 là số chính phơng. b, Tìm các số ab sao cho ab a b là số nguyên tố Lê Anh Tuấn Trờng THCS Vĩnh Khúc 7 50 đề bồi dỡng Toán 8 Câu 5: Cho a, b, c, d là các sô nguyên dơng CMR: A = a a b c+ + + b a b d+ + + c b c d+ + + d a c d+ + không phải là số nguyên. Câu 6: Cho ABCV cân (AB=AC) trên AB lấy điểm M, trên phần kéo dài của AC về phía C lấy điểm N sao cho: BM = CN, vẽ hình bình hành BMNP CMR: BC PC Câu 7: Cho x, y thoả mãn: 2x 2 + 2 1 x + 2 4 y = 4 (x 0) Tìm x, y để xy đạt giá trị nhỏ nhất đề 10 (52) Câu 1: Cho a, b, c > 0 và P = 3 2 2 a a ab b+ + + 3 2 2 b b bc c+ + + 3 2 2 c c ac a+ + Q = 3 2 2 b a ab b+ + + 3 2 2 c b bc c+ + + 3 2 2 a c ac a+ + a, CMR: P = Q b, CMR: P 3 a b c+ + Câu 2: Cho a, b, c thoả mãn a 2 + b 2 + c 2 = 1 CMR: abc + 2(1+a+b+c+ab+bc+ca) 0 Câu 3: CMR x, y Z thì: A = (x+y)(x+2y)(x+3y)(x+4y) + y 4 là số chính phơng. Câu 4: a, Tìm số tự nhiên m, n sao cho: m 2 + n 2 = m + n + 8 b, Tìm số nguyên nghiệm đúng: 4x 2 y = (x 2 +1)(x 2 +y 2 ) Câu 5: Tìm giá trị lớn nhất, giá trị nhỏ nhất: A = 2 4 3 1 x x + + Câu 6: Lê Anh Tuấn Trờng THCS Vĩnh Khúc 8 50 đề bồi dỡng Toán 8 Cho x = 2 2 2 2 b c a ab + ; y = 2 2 2 2 ( ) ( ) a b c b c a + Tính giá trị: M = 1 x y xy + Câu 7: Giải BPT: 1 x a x < (x là ẩn số) Câu 8: Cho ABCV , trên BC lấy M, N sao cho BM = MN = NC. Gọi D, E là trung điểm của AC, AB, P là giao của AM và BD. Gọi Q là giao của AN và CE. Tính PQ theo BC Đề 11 (53) Câu 1: Cho x = a b a b + ; y = b c b c + ; z = c a c a + CMR: (1+x)(1+y)(1+z) = (1-x)(1-y)(1-z) Câu 2: Tìm giá trị nhỏ nhất, lớn nhất của A = 4 2 2 1 ( 1) x x + + Câu 3: a, Cho a, b, c > 0 và a+b+c = 1 CMR: b+c 16abc b, Cho 0 < a, b, c, d < 1. CMR có ít nhất một bất đẳng thức sai trong các bất đẳng thức sau: 2a(1-b) > 1 8c(1-d) > 1 3b(1-c) > 2 32d(1-a) > 3 Câu 4: Giải BPT: mx(x+1) > mx(x+m) + m 2 1 Câu 5: a, Tìm nghiệm nguyên tố của PT: x 2 + y 2 + z 2 = xyz b, Tìm số nguyên tố p để 4p + 1 là số chính phơng. Câu 6: Tìm số có 2 chữ số mà số ấy là bội số của tích hai chữ số của nó. Câu 7: Lê Anh Tuấn Trờng THCS Vĩnh Khúc 9 50 đề bồi dỡng Toán 8 Cho hình thang ABCD (BC// AD). Gọi O là giao điểm của hai đờng chéo AC, BD; Gọi E, F là trung điểm của AD, BC CMR: E, O, F thẳng hàng. đề 12 (54) Câu 1: Tìm đa thức f(x) biết: f(x) chia cho x+3 d 1 f(x) chia cho x-4 d 8 f(x) chia cho (x+3)(x-4) thơng là 3x và d Câu 2: a, Phân tích thành nhân tử: A = x 4 + 2000x 2 + 1999x + 2000 b, Cho: 2 2 2 x yz y zx z xy a b c = = CMR: 2 2 2 a bc b ca c ab x y z = = Câu 4: CMR: 1 9 + 1 25 + + 2 1 (2 1)n + < 1 4 Với n N và n 1 Câu 5: Tìm giá trị lớn nhất, giá trị nhỏ nhất: M = 2 2 2 2 x xy y x y + + + (x0; y0) Câu 6: a, Tìm nghiệm nguyên của PT: 2x 2 + 4x = 19 3y 2 b, CMR phơng trình sau không có nghiệm nguyên: x 2 + y 2 + z 2 = 1999 Câu 7: Cho hình vuông ABCD. Trên BD lấy M, từ M kẻ các đờng vuông góc AB, AD tại E, F. a, CMR: CF = DE; CF DE b, CMR: CM = EF; CM EF c, CMR: CM, BF, DE đồng qui đề 13 (55) Câu 1: Lê Anh Tuấn Trờng THCS Vĩnh Khúc 10 [...]... abc > 0 CMR: Cả 3 số đều dơng Câu 4: Tìm giá trị nhỏ nhất: A = x100 10x10 +10 Câu 5: Với giá trị nào của A thì PT: Lê Anh Tuấn 35 Trờng THCS Vĩnh Khúc 50 đề bồi dỡng Toán 8 2 x a + 1 = x + 3 có nghiệm duy nhất Câu 6: Cho VABC đờng thẳng d//BC cắt AB, AC tại D, E a, CMR: Với mọi điểm F trên BC luôn có SVDEF không lớn hơn 1 SVABC 4 b, Xác định vị trí D, E để SVDEF lớn nhất Đề 45 (88 ) Câu 1: a, Cho 1... điểm của IA, IB, IC a, CM: PQRE, PEDQ là hình chữ nhật b, CM: PD, QE, RF cắt nhau tại trung điểm của mỗi đoạn thẳng c, CM: H,K,L,D,E,F,P,Q,R cùng cách đều một điểm Lê Anh Tuấn 20 Trờng THCS Vĩnh Khúc 50 đề bồi dỡng Toán 8 đề 25 (67) Câu 1: Cho A = 4x2+8x+3; B = 6x2+3x a, Biến đổi S thành tích biết S = A + B b, Tìm giá trị của x để A và B lấy giá trị là số đối nhau Câu 2: Cho 3 số x, y, z thoả mãn đồng... ME, MF là trung tuyến của VAMB;VAMC đề 35 (77) Câu 1: a, Cho các số a, b, c là 3 số khác nhau CMR: ba ca a b 2 2 2 + + = + + (a b)(a c) (b c)(b a) (c a )(c b) a b b c c a b, Tìm x, y, z biết: x+y-z = y+z-x = z+x-y = xyz Câu 2: Giải PT: x +1 x + 2 x + 3 x + 4 + = + 58 57 56 55 Câu 3: Tìm giá trị lớn nhất Lê Anh Tuấn 28 Trờng THCS Vĩnh Khúc 50 đề bồi dỡng Toán 8 A= 1 1 1 + 3 3 + 3 (x, y, z > 0;... 2 + 2 2 b +c c +a a +b b+c c +a a +b Câu 6: Cho VABC vuông cân tại A, M là trung điểm BC Từ M vẽ góc 450, hai cạnh của góc cắt AB, AC tại E, F a, Xác định vị trí của E, F để SVMEF đạt giá trị lớn nhất Lê Anh Tuấn 32 Trờng THCS Vĩnh Khúc 50 đề bồi dỡng Toán 8 b, SVMEF lớn nhất là bao nhiêu? đề 41 (83 ) Câu 1: a, Cho a+b+c = 0 CMR: ( ab bc c a c a b + + )( + + )=0 c a b a b bc c a b, CMR với mọi x, y... PT: 2x-5y-6z =4 Câu 7: Cho hình vuông ABCD, Về phía ngoài hình vuông trên cạnh BC vẽ VBCF đều, về phía trong hình vuông trên cạnh AB vẽ VABE đều CMR: D, E, F thẳng hàng Đề 14 (56) Câu 1: x x y y2 1 x 2 ):( 3 + ): Cho A = ( 2 2 y + xy x + xy x xy x+ y y Lê Anh Tuấn 11 Trờng THCS Vĩnh Khúc 50 đề bồi dỡng Toán 8 a, Tìm TXĐ của A b, Tìm x, y để A > 1 và y < 0 Câu 2: a, Giải PT: x4 + 2x3 2x2 + 2x - 3... số là một số có 3 chữ số, Mẫu số là tổng các chữ số của tử số đề 26 ( 68) Câu 1: Cho x, y > 0 sao cho: 9y(y-x) = 4x2 Tính: x y x+ y Câu 2: Cho a, b, c thoả mãn: abc = 1 và a b c a2 c2 b2 + + = + + b2 c2 a 2 c b a CMR: Có ít nhất 1 phân số là bình phơng của một trong 2 số còn lại Câu 3: Lê Anh Tuấn 21 Trờng THCS Vĩnh Khúc 50 đề bồi dỡng Toán 8 Tìm các nghiệm nguyên thoả mãn 2 BPT: 16+5x > 3+11 và 7x 3... vuông ABCD có cạnh là 1, trên AB, AD lấy M,N sao cho 0 ã MCN = 45 Tính chu vi VAMN đề 27 (69) Câu 1: Cho M = x3+x2-9x-9; N = (x-2)2 (x-4)2 a, Rút gọn A = M N b, CMR: Nếu x chẵn A tối giản Câu 2: Tìm số có 4 chữ số abcd thỏa mãn: Lê Anh Tuấn 22 Trờng THCS Vĩnh Khúc 50 đề bồi dỡng Toán 8 665(abcd +ab +ad +cd +1) = 7 38( bcd +b+ d) Câu 3: CMR: (x-1)(x-3)(x-4)(x-6) + 10 1 Câu 4: Cho số chính phơng M gồm... abc(a+b+c) Lê Anh Tuấn 23 Trờng THCS Vĩnh Khúc 50 đề bồi dỡng Toán 8 b, CMR: Nếu a, b, c là số đo 3 cạnh của 1 tam giác thì: a2+b2+c2 < 2(ab+ac+bc) Câu 5: Cho x, y thoả mãn: x2+y2 = 4+xy Tìm giá trị lớn nhất, giá trị nhỏ nhất của A = x2+y2 Câu 6: Cho hình vuông ABCD có cạnh là 1 Trên AB, AD lấy P, Q sao cho VAPQ cân có chu vi là 2 a, CMR: PQ + QD = PQ ã b, CMR: PCQ = 450 Đề 29 (71) Câu 1: Cho A = 4bc a 2 4ca... CMR: 0 a, b, c 4 3 Câu 5: Tính tổng S = 1+2x+3x2+4x3+ + nxn-1 (x1) Lê Anh Tuấn 14 Trờng THCS Vĩnh Khúc 50 đề bồi dỡng Toán 8 Câu 6: Tìm nghiệm nguyên của PT: xy xz yz + + =3 z y x Câu 7: ã Cho VABC biết đờng cao AH và trung tuyến AM chia góc BAC thành 3 phần bằng nhau Xác định các góc của VABC Đề 18 (60) Câu 1: a 2 bc b 2 ac c 2 ab + + Rút gọn: M = (a + b)(a + c) (b + a )(b + c) (a + c)(a + b) Câu... CMR: VMAC cân tại M đề 22 (64) Câu 1: Cho x3 + x = 1 x 4 2 x3 + x 2 3x + 5 Tính A = x5 x 2 x + 2 Câu 2: 2 2 Giải BPT: x 1 + x 4 = 3 Câu 3: Cho 3 số dơng x, y, z thoả mãn: x = 1 - 1 2 y y = 1 - 1 2z z = 1 - 1 2x Tìm số lớn nhất trong ba số x, y, z Câu 4: Cho x, y thoả mãn: x+y=1 Tìm giá trị nhỏ nhất của M = x3+y3+xy Câu 5: Lê Anh Tuấn 18 Trờng THCS Vĩnh Khúc 50 đề bồi dỡng Toán 8 CMR: 1 1 1 5 + . AD tại E, F. a, CMR: CF = DE; CF DE b, CMR: CM = EF; CM EF c, CMR: CM, BF, DE đồng qui đề 13 (55) Câu 1: Lê Anh Tuấn Trờng THCS Vĩnh Khúc 10 50 đề bồi dỡng Toán 8 a, Rút gọn: A = (1- 2 4 1 )(1- 2 4 3 ). Khúc 2 50 đề bồi dỡng Toán 8 a, Tính số đo các góc ACMV b, CMR: AM AB c, Kéo dài CA đoạn AN = a, kéo dài AB đoạn BP = a. CMR MNPV đều. đề 4 (46) Câu 1: Phân tích thành nhân tử: a, a 8 +. a 2 + b 2 + c 2 5 Câu 8: Cho hình chữ nhật ABCD có chiều dài BC gấp 2 lần chiều rộng CD, từ C kẻ Cx tạo với CD một góc 15 0 cắt AD tại E CMR: BCEV cân. đề 8 (50) Câu 1: Cho A = 3 2 3

Ngày đăng: 27/08/2014, 20:18

TỪ KHÓA LIÊN QUAN

w