KHÓA ĐÀO TẠO TÍNH TOÁN ỔN ĐỊNH VÀ HƯỚNG DẪN SỬ DỤNG PHẦN MỀM PSSE CHO KỸ SƯ HỆ THỐNG ĐIỆN (Các tính toán phân tích sự cố trên Phần mềm PSSE): • Symmetrical Components. • Sequence Impedances. • Analysis of Fault Conditions.• Representation of Faults.
TRANSMISSION & DISTRIBUTION A Division of Global Power POWER SYSTEM STABILITY CALCULATION TRAINING D5 FltAli D ay 5 - F au lt A na l ys i s July10,2013 Prepared by: Peter Anderson eBook for You OUTLINE 2 OUTLINE • Symmetrical Components • Sequence Impedances • Analysis of Fault Conditions RttifFlt • R epresen t a ti on o f F au lt s eBook for You SYMMETRICAL COMPONENTS SYMMETRICAL COMPONENTS 3 eBook for You SYMMETRICAL SEQUENCE COMPONENTS 4 SYMMETRICAL SEQUENCE COMPONENTS Any given set of Unbalanced Three - phase Vectors Any given set of Unbalanced Three phase Vectors can be represented by the sum of three sets of Balanced or Symmetrical vectors AA ACB BC B C PositiveSe q uence Ne g ativeSe q uence Z eroSe q uence q g q q eBook for You RELATIONSHIPS BETWEEN PHASE 5 VECTORS & SEQUENCE COMPONENTS A Piti S P os iti ve S equence 1A1C1A 2 1B1A aI=I,Ia=I,I 0 B 2 B 1 B B 0A2A1AA I + I + I = I I+I+I=I A B C NegativeSequence 2 0C2C1CC 0 B 2 B 1 B B I+I+I=I I I I I B C 2A 2 2C2A2B2A Ia=I,aI=I,I 2 021A I + aI + I a = I I+I+I=I B C ACB ZeroSequence 0 A 0 C 0 A 0 B 0 A I = I , I = I , I 02 2 1C 021B I+Ia+aI=I I + aI + I a = I 0 A 0 C 0 A 0 B 0 A I I , I I , I eBook for You SEQUENCE IMPEDANCES SEQUENCE IMPEDANCES 6 eBook for You SEQUENCE IMPEDANCES 7 SEQUENCE IMPEDANCES SequenceCurrents&VoltagesareIndependentofeachother •PositiveSe q uenceCurrentsonl y p roducePositiveSe q uenceVolta g e q y p q g Drops PositiveSequenceCurrentsaredeterminedsolelybythePositive SequenceDrivingVoltagesproducedbythePowerSources,thePositive SequencevoltageatthePointofFaultandtheSystemPositiveSequence Impedance NegativeSequenceCurrentsaredeterminedsolelybytheNegative SequencevoltageatthePointofFaultandtheSystemNegativeSequence Impedance Impedance ZeroSequenceCurrentsaredeterminedsolelybytheZeroSequence voltage at the Point of Fault and the System Zero Sequence Impedance voltage at the Point of Fault and the System Zero Sequence Impedance eBook for You SEQUENCE IMPEDANCES 8 SEQUENCE IMPEDANCES ThePositiveSequenceNetworkcontainsthePositiveSequenceDriving Volta g es p roducedb y thePowerSourcesandtheS y stemPositive g p y y SequenceImpedancestothePointofFault TheNegativeSequenceNetworkcontainstheNegativeSequence ImpedancesfromthePowerSourcestothePointofFault(NoDriving Voltages) Th Z S Nt k ti th Z S Id t Th e Z ero S equence N e t wor k con t a i ns th e Z ero S equence I mpe d ances t o thePointofFaultandanyconnectionstoEarth(NoDrivingVoltages) eBook for You POSITIVE SEQUENCE IMPEDANCE 9 POSITIVE SEQUENCE IMPEDANCE TransmissionLines Ia Ib Ea Eb Ic Ec Z1=E/I eBook for You ZERO SEQUENCE IMPEDANCE 10 ZERO SEQUENCE IMPEDANCE TransmissionLines E I I E I Z0=E/I eBook for You [...]... SEQUENCE IMPEDANCE Transformers I I I I E I Z0 = E/I Ampere‐turns are equal in each HV and LV Winding eBook for You I 12 ZERO SEQUENCE IMPEDANCE Transformers I I H I I L E n H Z0 n eBook for You I I L 13 ZERO SEQUENCE TRANSFORMER CONNECTIONS H A A ZO B eBook for You B L Switches A&B initially OPEN For Grounded Wye Winding – CLOSE Switch A For Delta Winding – CLOSE Switch B 14 ZERO SEQUENCE TRANSFORMER... Grounded Wye/Grounded Wye Grounded Wye/Grounded Wye Grounded Wye/Grounded Wye/Delta Grounded Wye/Grounded Wye/Delta eBook for You H 15 ZERO SEQUENCE TRANSFORMER CONNECTIONS WARNING NOTICE X0H‐N 0 Yg Yg L L T PSSE D eBook for You H N 0 X0L‐N X0T N T‐N H 3Rg Rg T H CORRECT MODEL 3Rg X0H‐N N X0L‐N L X0T‐N T eBook for You ANALYSIS OF FAULT CONDITIONS ANALYSIS OF FAULT CONDITIONS 16 17 ANALYSIS OF SHORT-CIRCUIT . for You ANALYSIS OF FAULT CONDITIONS ANALYSIS OF FAULT CONDITIONS 16 eBook for You ANALYSIS OF SHORT CIRCUIT CONDITIONS 17 ANALYSIS OF SHORT - CIRCUIT CONDITIONS ThreePhase Fault 0 = I + I + I C B A V = V = V = V C B A 0 = I 3 + ) a + a + 1 ( I + ) a + a + 1 ( I 0=)I+Ia+aI(+)I+aI+Ia(+)I+I+I( 0 = I + I + I 0 2 2 2 1 02 2 1021 2 021 C B A V=ZIa‐ZIa‐Ea=V V=ZI‐ZI‐E=V V = V = V = V 2 2 1 1 22 B 2211A C B A 0=I,0=)a+a+1(Since 0 = I 3 + ) a + a + 1 ( I + ) a + a + 1 ( I 0 2 0 2 1 V3=0=V+V+V V=ZIa‐ZIa‐aE=V CBA 22 2 11C 2 2 1 1 B 0=V=V=V CBA 2 2 3 3 0=I 0=V)a‐1(=ZI)1‐a(=)ZIa‐ZIa‐Ea(‐)ZI‐ZI‐E(=aV‐V 2 22 2 22 2 11 3 3 2211BA eBook. You ANALYSIS OF SHORT CIRCUIT CONDITIONS 18 ANALYSIS OF SHORT - CIRCUIT CONDITIONS Three Phase Fault Three Phase Fault 0=I,0=I, Z E =I 02 1 1 E F1 Z1 F2 Z2 F0 Z0 eBook for You ANALYSIS. CONDITIONS 19 ANALYSIS OF SHORT - CIRCUIT CONDITIONS Single Phase to Ground Fault Single Phase to Ground Fault 021 021 Z+Z+Z E3 =I=I=I 0=I=I 0=V CB A PhasetoPhase Fault E I I PhasetoPhasetoGround Fault 0 2 E ) Z+Z ( 0=I Z+Z = I ‐= I 0 21 21 0 100221 0 2 1 EZ‐ = I ZZ+ZZ+ZZ ) ( =I 2 0 100221 2 EZ‐ =I ZZ+ZZ+ZZ = I 100221 0 ZZ+ZZ+ZZ eBook