1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

ASM Metals Handbook - Desk Edition (ASM_ 1998) Episode 8 pps

180 352 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 180
Dung lượng 1,08 MB

Nội dung

Table 13 Tensile properties and fracture toughness of aluminum-lithium alloy 2090 Tensile properties Toughness Thickness Ultimate tensile strength Yield strength K Ic or K c 2090 temper mm in. Specification Direction (a) MPa ksi MPa ksi Elongation in 50 min (2 in.), % Direction (b) and K c or K Ic (c) MPa ksi Sheet L 530 (550) 77 (80) 517 (517) 75 (75) 3 (6) L-T (K c ) (44) (d) (40) (d) LT 505 73 503 73 5 . . . . . . . . . T83 0.8-3.175 0.032-0.125 AMS 4351 45 ° 440 64 440 64 . . . . . . . . . . . . L 483 70 483 70 4 . . . . . . . . . LT 455 66 455 66 5 . . . . . . . . . T83 3.2-6.32 0.126-0.249 AMS 4351 45 ° 385 56 385 56 . . . . . . . . . . . . AMS Draft L 495 (525) 72 (76) 455 (470) 66 (68) 3 (5) L-T (K c ) 49 (71) (d) 45 (65) (d) LT 475 69 415 60 5 T-L (K c ) 49 (d) 45 (d) T84 0.8-6.32 0.032-0.249 D89 45 ° 427 62 345 50 7 . . . . . . . . . T3 (e) . . . . . . (f) LT 317 min 46 min 214 min 31 min 6 min . . . . . . . . . O . . . . . . (f) LT 213 max 31 max 193 max 28 max 11 min . . . . . . . . . 7075-T6 . . . . . . . . . L (570) (83) (517) (75) (11) L-T (K c ) (71) (d) (65) (d) Extrusions 0.0-3.15 (h) 0.000-0.124 (h) AMS Draft L 517 75 470 68 4 . . . . . . . . . 3.175-6.32 (h) 0.125-0.249 (h) L 545 79 510 74 4 . . . . . . . . . L 550 80 517 75 5 . . . . . . . . . T86 (g) 6.35-12.65 (h) 0.250-0.499 (h) D88BE LT 525 76 483 70 . . . . . . . . . . . . Plate 7075-T6 . . . . . . . . . L (565) (82) (510) (74) (11) L-T (K Ic ) (27) (25) L 517 (550) 75 (80) 483 (517) 70 (75) 4 (8) L-T (K Ic ) 27 (71) 25 (65) T81 13-38 0.50-1.50 AMS 4346 LT 517 75 470 68 3 L-T (K Ic ) 22 20 Typical values are given in parentheses. Data for alloy 7075-T6 are included for comparison. (a) L, longitudinal; LT, long transverse. (b) L-T, crack plane and direction perpendicular to the principal direction of metalworking (rolling or extrusion); T-L, crack plane and direction parallel to the direction of metalworking. (c) K c , plane-stress fracture toughness; K Ic , plane-strain fracture toughness. (d) Toughness limits based on limited data and typical values (in parentheses) for 405 × 1120 mm (16 × 44 in.) sheet panel. (e) The T3 temper can be aged to the T83 or T84 temper. (f) No end user specification. (g) Temper registration request made to the Aluminum Association. (h) Nominal diameter or least thickness (bars, rod, wire, shapes) or nominal wall thickness (tube) Table 14 Tensile properties and fracture toughness of aluminum-lithium alloy 8090 Minimum and typical (b) tensile properties Minimum and typical (b) fracture toughness values Ultimate tensile strength 0.2% yield strength Toughness value (b) Temper Product form Grain structure (a) Direction MPa ksi MPa ksi Elongation in 50 mm (2 in.), % Fracture orientation and toughness type (K c or K Ic ) (c) MPa ksi Longitudinal 345- 440 50- 64 295- 350 43- 51 8-10 typ L-T (K c ) 94-165 86-150 Long transverse 385- 450 56- 65 290- 325 42- 47 10-12 T-L (K c ) 85 min 77 min 8090-T81 (underaged) Damage- tolerant bare sheet <3.55 mm (0.140 in.) thick R 45 ° 380- 435 55- 63 265- 340 38.5- 49 14 typ S-L (K c ) . . . . . . Longitudinal 470- 490 68- 71 380- 425 55- 62 4-5 L-T (K c ) 75 typ 68 typ Long transverse 450- 485 65- 70 350- 440 51- 64 4-7 T-L (K c ) . . . . . . 8090-T8X (peak aged) Medium- strength sheet UR 45 ° 380- 415 55- 60 305- 345 44- 50 4-11 S-L (K c ) . . . Longitudinal 420- 455 61- 66 325- 385 47- 56 4-8 L-T (K c ) . . . . . . Long transverse 420- 440 61- 64 325- 360 47- 52 4-8 T-L (K c ) . . . 8090-78X Medium- strength sheet R 45 ° 420- 425 61- 62 325- 340 47- 49 4-10 S-L (K c ) . . . . . . Longitudinal 460- 515 67- 75 380- 450 55- 65 4-6 min L-T (K Ic ) 20-35 18-32 Long transverse 435 min 63 min 365 min 53 min 4 min T-L (K Ic ) 13-30 12-27 8090- T8771, 8090-T651 (peak aged) Medium- strength plate UR Short transverse 465 typ 67 typ 360 typ 52 typ . . . S-L (K Ic ) 16 typ 14.5 typ 45 ° 420 min 61 min 340 min 49 min 1-1.5 min Longitudinal 435- 450 63- 65 345- 370 50- 54 5 min L-T (K Ic ) 35-49 32-45 8090-T8151 (underaged) Damage- tolerant plate UR Long transverse 435 min 63 in 325 min 47 min 5 min T-L (K Ic ) 30-44 27-40 Longitudinal 425- 495 62- 72 340- 415 49- 60 6-8 L-T (K Ic ) 30 typ 27 typ Long transverse 405- 475 59- 69 325- 395 47- 57 3-6 T-L (K Ic ) 20 typ 18 typ 8090-T852 Die forgings with cold work, or hand forgings UR 45 ° 405- 450 59- 65 305- 395 44- 57 2-6 S-L (K Ic ) 15 typ 14 typ 8090- T8511, 8090-T6511 Extrusions UR Longitudinal 460- 510 67- 74 395- 450 57- 65 3-6 . . . . . . . . . (a) R, recrystallized; UR, unrecrystallized. (b) Unless otherwise specified as only a minimum (min) or a typical (typ) value, the two values given for a property represent the minimum and typical value. The minimum values are proposed by various customer and national specifications and do not reflect a uniform registration. (c) K c , plane-stress fracture toughness; K Ic , plane-strain fracture toughness Aluminum Foundry Products Introduction ALUMINUM CASTING ALLOYS are the most versatile of all common foundry alloys and generally have the highest castability ratings. As casting materials, aluminum alloys have the following favorable characteristics: • Good fluidity for filling thin sections • Low melting point relative to those required for many other metals • Rapid heat transfer from the molten aluminum to the mold, providing shorter casting cycles • Hydrogen is the only gas with appreciable solubility in aluminum and aluminum alloys, and hyd rogen solubility in aluminum can be readily controlled by processing methods. • Many aluminum alloys are relatively free from hot-short cracking and tearing tendencies. • Chemical stability • Good as-cast surface finish with lustrous surfaces and little or no blemishes Aluminum alloy castings are the cost-effective answer to many needs and problems in construction of machines, equipment, appliances, vehicles and structures, usually serving a primarily mechanical function, but often combining this with an appearance or decorative function. This requires cast parts in a great variety of geometric configurations, frequently combining several different basic forms in an integral or monolithic piece. These parts include covers and housings, which may be ribbed for reinforcement or finned for heat conduction or dissipation; frames and boxlike parts; cylindrical or spherical tanks for containment of gases or fluids; brackets; pistons; wheels; disks; impellers; bulkheads; and clamps. The list of forms produced is nearly endless, and many such parts have a multitude of cored holes in bosses for fastening or as passage for fluids. Casting Processes Aluminum alloy castings are routinely produced by pressure-die, permanent-mold, green- and dry-sand, investment, and plaster casting. Aluminum alloys are also readily cast with vacuum, low-pressure, centrifugal, and pattern-related processes such as lost foam. Die Casting. In die casting, which is the process used for the highest volume of production, molten metal is injected into cavities formed by heat treated steel dies and cores under pressures up to 140 MPa (20 ksi). Part size is limited only by machine capacity, and some machines are capable of producing castings weighing over 50 kg (100 lb), although casting weights up to 5 kg (10 lb) are more common. As-cast surfaces are very smooth and detailed; machining is generally required only to provides fits or seals with other parts. Die casting permits metal sections thinner than those obtainable by sand or permanent mold casting. High mechanical properties and resistance to fatigue can be developed in die castings without heat treatment because of the fine microstructures produced by the rapid solidification. Alloys most frequently used in die casting differ in composition from those employed in other casting processes, because the fine die cast microstructure allows higher volume fractions of second-phase constituents, silicon, and intermetallic compounds without damaging effects on ductility or impact resistance. Iron contents up to 1%, which would impair both strength and ductility of other more slowly solidified castings, are quite beneficial in die casting compositions, minimizing the tendency of the aluminum to "solder" or adhere to the steel dies. Common die cast aluminum alloys and their typical applications include: Alloy 308.0 Lawnmower housings, gear cases, and cylinder heads for air-cooled engines Alloy A380.0 Streetlamp housings, typewriter frames, and dental equipment Alloy 360.0 Frying skillets, cover plates, instrument cases, and parts requiring corrosion resistance Alloy 413.0 Outboard motor parts such as pistons, connecting rods, and housings Alloy 518.0 Escalator parts, conveyor components, aircraft and marine hardware, and fittings Permanent mold casting employs metal molds and cores with either gravity or low-pressure introduction of molten metal. Most permanent mold castings weigh less than 10 kg (20 lb), but castings weighing up to 25 kg (50 lb), and sometimes even up to 100 kg (200 lb), are not uncommon. Permanent mold castings have smoother surfaces than those of sand castings and exhibit superior pressure tightness. Tapered metal cores are used to form straight-wall cavities, and collapsible metal cores are used to form internal ribs and undercuts, which also can be formed by expendable (dry sand or plastic) cores. When the latter are used, the process is referred to as semi-permanent mold casting. Mechanical properties (including fatigue resistance) of permanent mold castings are very high because of the fine microstructure and the capability for heat treatment. Some common aluminum permanent mold casting alloys, and typical products cast from them, are presented in the following table: Alloy 336.0 Automotive pistons Alloys 355.0, C355.0, A357.0 Timing gears, impellers, compressors, and aircraft and missile components requiring high strength Alloys 356.0, A356.0 Machine tool parts, aircraft wheels, pump parts, marine hardware, valve bodies Alloy B443.0 Carburetor bodies, waffle irons Alloy 513.0 Ornamental hardware and architectural fittings Other aluminum alloys commonly used for permanent mold castings include 296.0, 319.0, and 333.0. Specifications for permanent mold castings are cross referenced in Table 1. Table 1 Cross- reference chart of frequently used specifications for aluminum alloy sand and permanent mold (PM) castings Alloy Federal ASTM (a) Aluminum Association No. Former designation QQ-A-601E (sand) QQ-A-596d (PM) B 26 (sand) B 108 (PM) SAE (b) AMS or MIL-21180c 208.0 108 108 . . . CS43A CS43A . . . . . . 213.0 C113 . . . 113 CS74A CS74A 33 . . . 222.0 122 122 122 CG100A CG100A 34 . . . 242.0 142 142 142 CN42A CN42A 39 4222 295.0 195 195 . . . C4A . . . 38 4231 296.0 B295.0 . . . B195 . . . . . . 380 . . . 308.0 A108 . . . A108 . . . . . . . . . . . . 319.0 319, Allcast 319 319 SC64D SC64D 326 . . . 328.0 Red X-8 Red X-8 . . . SC82A . . . 327 . . . 332.0 F332.0 . . . F132 . . . SC103A 332 . . . 333.0 333 . . . 333 . . . . . . . . . . . . 336.0 A332.0 . . . A132 . . . SN122A 321 . . . 354.0 354 . . . . . . . . . . . . . . . C354 (c) 355.0 355 355 355 SC51A SC51A 322 4210 C355.0 C355 . . . C355 . . . SC51B 355 C355 (c) 356.0 356 356 356 SG70A SG70A 323 (d) A356.0 A356 . . . A356 . . . SG70B 336 A356 (c) 357.0 357 . . . 357 . . . . . . . . . 4241 A357.0 A357 . . . . . . . . . . . . . . . A357 (c) 359.0 359 . . . . . . . . . . . . . . . 359 (c) B443.0 43 43 43 S5A S5A . . . . . . 512.0 (e) B514.0 B214 . . . GS42A GS42A . . . . . . 513.0 A514.0 . . . A214 . . . GZ42A . . . . . . 514.0 214 214 . . . G4A . . . 320 . . . 520.0 220 220 . . . G10A . . . 324 4240 535.0 Almag 35 Almag 35 . . . GM70B GM70B . . . 4238 705.0 603, Ternalloy 5 Ternalloy 5 Ternalloy 5 ZG32A ZG32A 311 . . . 707.0 607, Ternalloy 7 Ternalloy 7 Ternalloy 7 ZG42A ZG42A 312 . . . 710.0 A712.0 A612 . . . ZG61B . . . 313 . . . 712.0 D712.0 40E . . . ZG61A . . . 310 . . . 713.0 613, Tenzaloy Tenzaloy . . . ZC81A . . . 315 . . . 771.0 Precedent 71A Precedent 71A . . . . . . . . . . . . . . . 850.0 750 750 750 . . . . . . . . . . . . 851.0 A850.0 A750 A750 . . . . . . . . . . . . 852.0 B850.0 B750 B750 . . . . . . . . . . . . (a) Former designations. ASTM adopted the Aluminum Association designation system in 1974. (b) Former designations used in SAE specifications J452 and/or J453. In 1990, SAE J452 adopted the ANSI/Aluminum Association numbering system for alloys. SAE J453-1986 has also superceded SAE J452. (c) Designation in MIL-21180c. (d) Alloy 356.0 is specified in AMS 4217, 4260, 4261, 4284, 4285, and 4286. (e) Alloy 512.0 is no longer active; it is included for reference purposes only. Sand casting is in some ways the most versatile foundry method, with few limitations on the type of alloy that can be used or on part size or shape and extent of coring to form internal cavities and passages. This process is employed for relatively large parts, when required quantities are small, or when the design or the alloy dictates use of an expendable mold material. Size or weight limitations are generally established by melting, metal, or mold-handling capabilities. Sand castings weighing over 9,000 kg (18,000 lb) with dimensions of 5.5 m (18 ft) and over have been produced. As-cast surfaces are rougher than for other processes, and required dimensional tolerances are greater. A full range of mechanical properties is available because both non-heat-treatable alloys and heat treatable alloys of high strength capability can be used. Typical products made from some common aluminum sand casting alloys include: Alloy C355.0 Air-compressor fittings, crankcases, and gear housings Alloy A356.0 Automobile transmission cases, oil pans, and rear-axle housings Alloy 357.0 Pump bodies and cylinder blocks for water-cooled engines Alloy 443.0 Pipe fittings, cooking utensils, and ornamental marine fittings [...]... (S) 2 .81 282 3 0.102 53 0- 99 0- 44 0.40 201.0 222.0 635 1 180 T77 (S) 2 .81 282 3 0.102 525635 980 1 180 38 0.36 22.1 12.3 23.6 13.1 T571 (P) 2 .81 282 3 0.102 525635 980 1 180 34 0.32 22.5 12.5 24.5 13.6 T61 (P) 2 .81 282 3 0.102 525635 980 1 180 33 0.32 22.5 12.5 24.5 13.6 T4 (S) 2 .81 282 3 0.102 520645 9701190 35 0.33 22.9 12.7 24 .8 13 .8 T62 (S) 2 .81 282 3 0.102 520645 9701190 35 0.34 22.9 12.7 24 .8 13 .8 T4... 2 .81 282 3 0.102 600650 11101200 35 0.33 24.1 13.4 26.3 14.6 711.0 F (P) 2 .84 285 1 0.103 600645 11101190 40 0. 38 23.6 13.1 25.6 14.2 712.0 F (S) 2 .82 282 3 0.102 600640 11101 180 40 0. 38 23.6 13.1 25.6 14.2 713.0 F (S) 2 .84 287 9 0.104 595630 11001170 37 0.37 23.9 13.3 25.9 14.4 85 0.0 T5 (S) 2 .87 285 1 0.103 225650 4401200 47 0.44 85 1.0 T5 (S) 2 .83 282 3 0.102 230630 4501170 43 0.40 22.7 12.6 85 2.0... 0.34 A444.0 F (P) 2. 68 2 685 0.097 575630 10701170 41 0. 38 21 .8 12.1 23 .8 13.2 511.0 F (S) 2.66 2657 0.096 590640 10901 180 36 0.34 23.6 13.1 25.7 14.3 512.0 F (S) 2.65 2657 0.096 590630 10901170 38 0.35 22.9 12.7 24 .8 13 .8 513.0 F (P) 2. 68 2 685 0.097 580 640 1 080 1 180 34 0.32 23.9 13.3 25.9 14.4 514.0 F (S) 2.65 2657 0.096 600640 11101 180 35 0.33 23.9 13.3 25.9 14.4 5 18. 0 F (D) 2.53 2519 0.091 540620... 20 62 9 222.0 O 186 27 1 38 20 1.0 80 1 38 20 145 21 65 9.5 T61 283 41 276 40 . 34 5- 440 5 0- 64 29 5- 350 4 3- 51 8- 1 0 typ L-T (K c ) 9 4-1 65 8 6-1 50 Long transverse 38 5- 450 5 6- 65 29 0- 325 4 2- 47 1 0-1 2 T-L (K c ) 85 min 77 min 80 90-T81 (underaged) Damage- tolerant. 38 0- 435 5 5- 63 26 5- 340 38. 5- 49 14 typ S-L (K c ) . . . . . . Longitudinal 47 0- 490 6 8- 71 38 0- 425 5 5- 62 4-5 L-T (K c ) 75 typ 68 typ Long transverse 45 0- 485 6 5- 70 35 0- 440. 4 7- 56 4 -8 L-T (K c ) . . . . . . Long transverse 42 0- 440 6 1- 64 32 5- 360 4 7- 52 4 -8 T-L (K c ) . . . 80 9 0-7 8X Medium- strength sheet R 45 ° 42 0- 425 6 1- 62 32 5- 340 4 7- 49 4-1 0

Ngày đăng: 13/08/2014, 05:20

TỪ KHÓA LIÊN QUAN