1. Trang chủ
  2. » Khoa Học Tự Nhiên

TÀI LIỆU TẬP HUẤN NÂNG CAO GIẢI TOÁN THCS TRấN MÁY TÍNH CẦM TAY 08, 09, 10/10/2009 (PHẦN 3) pps

5 380 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 5
Dung lượng 111,24 KB

Nội dung

CÁC BÀI TOÁN VỀ ĐA THỨC Một số kiến thức cần nhớ: 1.. Sơ đồ Hor nơ Ta có thể dùng sơ đồ Hor nơ để thìm kết quả của phép chia đa thức fx cho nhị thức x – a.. Bước 1: Đặt các hệ số của đ

Trang 1

TÀI LIỆU TẬP HUẤN NÂNG CAO GIẢI TOÁN THCS TRấN MÁY TÍNH CẦM TAY

08, 09, 10/10/2009 (PHẦN 3)

VI CÁC BÀI TOÁN VỀ ĐA THỨC

Một số kiến thức cần nhớ:

1 Định lý Bezout

Số dư trong phép chia f(x) cho nhị thức x – a chính là f(a)

Hệ quả: Nếu a là nghiệm của f(x) thì f(x) chia hết cho x – a

2 Sơ đồ Hor nơ

Ta có thể dùng sơ đồ Hor nơ để thìm kết quả của phép chia đa thức f(x) cho nhị thức x – a

Ví dụ:

Thực hiện phép chia (x3 – 5x2 + 8x – 4) cho x – 2 bằng cách dùng sơ đồ Hor

Bước 1: Đặt các hệ số của đa thức bị chia theo thứ tự vào các cột của dòng trên

Bước 2: Trong 4 cột để trống ở dòng dưới, ba cột đầu cho ta các hệ số của đa thức thương, cột cuối cùng cho ta số dư

- Số thứ nhất của dòng dưới = số tương ứng ở dòng trên

- Kể từ cột thứ hai, mỗi số ở dòng dưới được xác định bằng cách lấy a nhân với

số cùng dòng liền trước rồi cộng với số cùng cột ở dòng trên

a = 2

-5 8 -4

1

a = 2

-5 8 -4

1

Trang 2

Vậy (x3 – 5x2 + 8x – 4) = (x – 2)(x2 – 3x + 2) + 0

* Nếu đa thức bị chia là a0x3 + a1x2 + a2x + a3 , đa thức chia là x – a, ta được thương là b0x2 + b1x + b2 dư là r Theo sơ đồ Hor nơ ta có:

Bài 1: Tìm số dư trong các phép chia sau:

a) x3 – 9x2 – 35x + 7 cho x – 12

b) x3 – 3,256 x + 7,321 cho x – 1,1617

c) Tính a để x4 + 7x3 + 2x2 + 13x + a chia hết cho x + 6

d)

6, 723 1,857 6, 458 4,319

2,318

x

 e) Cho P(x) = 3x3 + 17x – 625

+ Tính P(2 2)

+ Tính a để P(x) + a2 chia hết cho x + 3

Bài 2 :

Cho P(x) = x5 + ax4 + bx3 + cx2 + dx + f

Biết P(1) = 1 , P(2) = 4 , P(3) = 9 , P(4) = 16 , P(5) = 15 Tính P(6) , P(7) , P(8) , P(9)

Giải:

Ta có P(1) = 1 = 12; P(2) = 4 = 22 ; P(3) = 9 = 32 ; P(4) = 16 = 42 ; P(5) = 25 = 52 Xét đa thức Q(x) = P(x) – x2

Dễ thấy Q(1) = Q(2) = Q(3) = Q(4) = Q(5) = 0

a

a0

b0

r

a0 ab0 + a1 ab1 + a2 ab2 + a3

Trang 3

Suy ra 1; 2; 3; 4; 5 là nghiệm của đa thức Q(x)

Vì hệ số của x5 bằng 1 nên Q(x) có dạng:

Q(x) = (x – 1)(x – 2)(x – 3)(x – 4)(x – 5)

Vậy ta có Q(6) = (6 – 1)(6 – 2)(6 – 3)(6 – 4)(6 – 5) = P(6) - 62

Hay P(6) = 5! + 62 = 156

Q(7) = (7 – 1)(7 – 2)(7 – 3)(7 – 4)(7 – 5) = P(7) – 72

Hay P(7) = 6! + 72 = 769

Bài 3:

Cho Q(x) = x4 + mx3 + nx2 + px + q Biết Q(1) = 5 , Q(2) = 7 , Q(3) = 9 ,

Q(4) = 11

Tính các giá trị của Q(10) , Q(11) , Q(12) , Q(13)

Hướng dẫn

Q(1) = 5 = 2.1 + 3; Q(2) = 7 = 2.2 + 3; Q(3) = 9 = 2.3 + 3 ; Q(4) = 11 = 2.4 + 3 Xét đa thức Q1(x) = Q(x) – (2x + 3)

Bài 4 : Cho P(x) = x5 + ax4 + bx3 + cx2 + dx + e

Biết P(1) = 3 , P(2) = 9 , P(3) = 19 , P(4) = 33 , P(5) = 51 Tính P(6) , P(7) , P(8) , P(9) , P(10) , P(11)

Bài 5:

Cho P(x) = x4 + ax3 + bx2 + cx + d Có P(1) = 0,5 ; P(2) = 2 ; P(3) = 4,5 ;

P(4) = 8 Tính P(2002), P(2003)

Bài 6:

Cho P(x) = x4 + ax3 + bx2 + cx + d Biết P(1) = 5; P(2) = 14; P(3) = 29; P(4) = 50 Hãy tính P(5) , P(6) , P(7) , P(8)

Bài 7:

Cho P(x) = x4 + ax3 + bx2 + cx + d Biết P(1) = 0; P(2) = 4 ; P(3) = 18 ; P(4) = 48 Tính P(2007)

Bài 8 : Cho P(x) = x5 + 2x4 – 3x3 + 4x2 – 5x + m

Trang 4

a) Tìm số dư trong phép chia P(x) cho x – 2,5 khi m = 2003

b) Tìm giá trị của m để P(x) chia hết cho x – 2,5

c) P(x) có nghiệm x = 2 Tìm m

Bài 9: Cho P(x) = 2 4 3

3xxx a) Tìm biểu thức thương Q(x) khi chia P(x) cho x – 5

b) Tìm số dư của phép chia P(x) cho x – 5 chính xác đến 3 chữ số thập phân

Bài 10:

Tìm số dư trong phép chia đa thức x5 – 7,834x3 + 7,581x2 – 4,568x + 3,194 cho

x – 2,652 Tìm hệ số của x2 trong đ thức thương của phép chia trên

Bài 11:

Khi chia đa thức 2x4 + 8x3 – 7x2 + 8x – 12 cho x – 2 ta được thương là đa thức Q(x) có bậc là 3 Hãy tìm hệ số của x2 trong Q(x)

Bài 12:

Cho đa thức P(x) = 6x3 – 7x2 – 16x + m

a) Tìm m để P(x) chia hết cho 2x + 3

b) Với m tìm được ở câu a ) , hãy tìm số dư r khi chia P(x) cho 3x – 2 và phân tích P(x) thành tích của các thừa số bậc nhất

c) Tìm m và n để Q(x) = 2x3 – 5x2 – 13x + n và P(x) cùng chia hết cho x – 2 d) Với n tìm được ở trên , hãy phân tích Q(x) ra tích của các thừa số bậc nhất

Bài 13:

Cho P(x) = x4 + 5x3 – 4x2 + 3x + m và Q(x) = x4 + 4x3 - 3x2 + 2x + n

a) Tìm các giá trị của m và n để P(x) và Q(x) cùng chia hết cho x – 2

b) Với giá trị của m và n tìm được , chứng tỏ rằng R(x) = P(x) – Q(x) chỉ có một nghiệm duy nhất

Bài 14 :

Trang 5

Cho f(x) = x3 + ax2 + bx + c Biết : f 

 3

1 = 108

7 ; f 

 2

1 = 5

3

 ; f 

 5

1 = 500

89 Tính

giá trị đúng và gần đúng của f 

 3

2

Bài 15:

Xác định các hệ số a, b, c của đa thức:

P(x) = ax3 + bx2 + cx – 2007 để sao cho P(x) chia cho (x – 13) có số dư là 1, chia cho (x – 3) có số dư là là 2, và chia cho (x – 14) có số dư là 3

(Kết quả lấy với hai chữ số ở hàng thập phân)

Bài 16:

Xác định các hệ số a, b, c, d và tính giá trị của đa thức

Q(x) = x5 + ax4 + bx3 + cx2 + dx – 2007 tại các giá trị của x = 1,15; 1,25; 1,35; 1,45

Ngày đăng: 11/08/2014, 03:26

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w