electrowinning 330 sizes 274 support design 273 surface description 273 Steam concentrate drier 80 Stokes' Law matte settling 174 Submerged tuyere smelting Noranda 104, Teniente 110 Van
Trang 1induction furnace for oxygen free
copper 373
Milling (crushing, grinding, flotation)
3 1 (see also Concentration of Cu
ores)
flowsheets 32, 47
orc 31
slag 181
compositions (stoichiometry) 401
general 19
hydrometallurgy 29 1
Mining copper ores
blasting 34
costs 387,389
cut-off grades 19
mine locations 17
production statistics 20
Minerals of copper 19
Mining equipment cost index 386
Mitsubishi continuous smelting/
converting process 199
207
Ca0-Cu20-Fe304 slag for 206,207
control 211
converting furnace 157,158
electric furnace 203, 202
impurity bchavior 21 1
industrial data 204, 205
converter 160,204
flowsheets 200
scrap addition 362
lances 201
matte grade 2 I O
matte and copper siphons 158, 202
reactions 208
scrap smelting by 361,362
smelting furnace 201,202
Mixer-settlers, solvent extraction 312,
12.313
construction materials 3 14
industrial data 3 14
picket fences in 3 16
purpose 316
Nickel
behavior during
electric furnace smelting 406
electrorefining 270
electrode potential 272
scrap smelting 359 smelting 69, 86
anodes, electrorefining 271 cathode copper, electrorefining
ASTM specification 368 electrolyte, electrorefining 276 removal from 276 sulfate byproduct from 276 scrap, removal from 359 tough pitch copper, ASTM specific-
Noranda continuous converting process
concentrations in:
27 1
ation 369
166,166 control 169 industrial data 167 reactions 168
Noranda smelting process 103, 7, 104
concentrates, dry through tuyeres
control 108 impurity behavior 107 industrial data 105 scrap smelting in 107 tuyere pyrometer for 109 I06
Obsolete scrap 344
Offgases 2 19 (see also specific pro- cesses)
sulfuric acid manufacture from 2 17 treatment of 2 I7
flowsheet 221 Old (obsolete) scrap 344
Oleum 235,240 Ores of copper industrial distribution 345
%CU I , 48,296 cut-off grade 19 minerals 19
Outokumpu flash smelting 73 (see also
Flash furnace matte smelting, Outokumpu)
Outokumpu direct-to-copper flash
smelting 187 (see also Flash furnace direct-to-copper smelting)
Outokumpu flash converting 162 industrial data I64
Trang 2Oxide copper minerals 291
Oxygen enrichment (see also specific
leaching of 291
processes and industrial data tables)
converting 144
advantages 144
upper limit 145
148
direct-to-copper smelting 189, 191
smelting 67
Oxygen in copper
shrouded tuyere overcomes
advantages 67
anodes, electrorefining 249,271
continuous converting copper 160,
converter 'blister' copper 140
direct-to-copper smelting copper 191
oxygen free copper 369
tough pitch copper 378
164
ASTM specification 369
Oxygen in matte 6 I , 64
Oxygen manufacture 8 1
Passivation of electrorefining anodes
Peirce-Smith converting 13 I
alternatives 148
campaign life 138, 147
maximizing 147
concentrate smelting in 146
converter 8, 132, 133, 135
copper blow 134
copper in slag 138-140
recovery of 179, 182
end point determinations 144
feed matte compositions 61, 138, 140
flux, optimum 143
high pressure shrouded tuyeres for
impurity behavior 136
industrial data 138
offgas collection 141
oxygen enrichment ofblast 144, 138
product copper composition 140
productivity maximization 145, 147
reactions I3 1
scrap additions 138, 146
282
precious metals in 143
148, 149
maximizing I46 slag 133, 138, 140 copper recovery from 179, 182 blow 133
formation rate 143 temperature control 141 temperature choice 141, 142 measurement 143
accretion buildup 141, 142
tuyeres 141, 133
high pressure tuyere prevents
148,149
tuyere pyrometer 143 Periodic current reversal, electrorefining avoids passivation 282
Phase diagrams
Ca0-Cu20-Fe0, 207
cu-s 135 Cu2S-FeS 64 Fe0-Fe20,-Si02 62
FeO-FeS-Si02 58
anode slimes treatment 4 13 converting 137
electrorefining 270,271 smelting 69
Platinum mesh - Pb composite
electrowinning anode 336, 337
Polymer concrete electrolytic cells 278
electrorefining, 264, 268, 278, 283
electrowinning 329 Price, copper 28 profitable 389, 398
Production of copper 17, I7
by country 20
electrorefining 20, 24 China 416 electrowinning 20, 26 Chile 27
mining 20 smelting 20, 23 Platinum group metal behavior during:
Profitability of copper extraction 389,
398
Recycling of copper scrap 341, 355 (see also Scrap, copper recovery from) Refinery locations 24
Chinese 416 map 24
Trang 3production statistics 20, 25
Refining, electrolytic 265 (see also
Electrorefining of copper)
Refining, fire 247 (see also Fire
refining of molten copper)
Refractories (see also specific processes)
converting 137
protection by magnetite 85
smelting 74,91, 104 (see also
Reverberatory matte smelting 403
Roasting for smelting 403
Rod production
consumption 138
specijic smelting processes)
bar casting and rolling 376
industrial data 378
oxygen free copper 379
Hazelett 377
Southwire 376,376, 377
Scrap, copper recovery from 341,355
anode furnaces, in 36 I , 362
automobile scrap 348,349
black copper 359
cable 346,347
converting of 358
blast (shaft) furnace 355,356
cable 346,347
categories of scrap 342,345
collection and physical processing
34 1
converting black copper 359
electronic 350
fire refining 359
home (run around) 342
Mitsubishi process 361, 362
new 342
Noranda process 107
old (obsolete) 344
industrial data 345
Peirce-Smith converters in 361
physical separation processes 341
in primary smelters 360
refining (fire and electrolytic) 359
smelting processes for 355
black copper 356,357
converting of 358
blast (shaft) furnace 355
chemical reactions 357
fire refining 359 flowsheet 356 primary smelter 360 secondary smelter 355 shaft (blast) furnace 355 top blown rotary converter 358 wire 346,347
Selenium behavior during:
converting 137 electrorefining 270 slimes (anode) treatment 4 13 smelting 69, 86, 1 15
anodes 271 cathode copper 271 ASTM specification 368 tough pitch ASTM specification
369 Selenium in copper
Selenium in anode slimes 41 3 Semi-autogenous grinding 35, 36 energyuse 37
industrial data 37 Shaft (blast) furnace smelting concentrate 4 I O scrap 355 Shrouded high pressure tuyere, converting 148, 149
Silver, behavior during converting 137 electrorefining 270,271 smelting 69, 86 Silver in copper anodes 271
cathode copper 271
tough pitch ASTM specification 369 ASTM specification 368
Slags 59 (see also following items)
Slags, CaO based 206 advantages I6 1 CaO-Cu,O-FeO, phase diagram 207 disadvantages 163
flash converting 163
melting points 207 Mitsubishi converting 161, 207
viscosity 161
after electric furnace settling 179 after solidification/flotation 182
industrial data 164
industrial data 160
Slags, copper concentrations in
Trang 4converting 140
direct-to-copper smelting slag 193
industrial data 138
industrial data 191
limits use of 194
matte grade effect on 69
minimization 175
smelting 61, 69
industrial data 61 (see also spec-
ific processes)
Slags, copper losses in 173
Slags, copper recovery from
furnace for I78
industrial data 179, 180
soIidificationAlotation 18 I
industrial data 182
minimization 175
settling 176
Slags, Si02 based
converter 140
industrial data 138
density 63
electrical conductivity 63
Fe0-Fe20,-Si02 phase diagram 62
FeO-FeS-Si02 phase diagram 58
ionic structure 59, 60
interfacial tension 65
melting point 62
smelting industrial data 61
structure 59, 60
surface tension 63
viscosity 62,63
equation 63
Slimes, anode (electrorefining) 270
Cu recovery from 41 3
pressure leaching 414
cost 393
locations and capacities 23
map 22
production statistics 21
Ausmelt 119
blast (shaft) furnace 4 I O
chemistry 57
converter, smelting in 146
copper losses during 173
dusts from 61
electric furnace 405
flash furnace, Inco 9 1
Smelters
Smelting to matte 57
flash furnace, Outokumpu 73 fluxesfor 61
heats of reaction 5 Isasmelt process I 19 matte from 6 1, 64 minor element behavior 69 Mitsubishi process 199 Noranda process 104 oxygen enrichment during 67 reactions 5, 57
reverberatory 403 shaft (blast) furnace 410 slags from 59,61 viscosity 63 Teniente 1 10 Vanyukov furnace 408 Smelting direct to copper metal 187 Solvent extraction transfer of Cu from pregnant leach solution to elec- trolyte 307,290, 308, 3 / 8 acid concentration effect 309 aqueous carryover, minimization of
312 purpose 3 12 chemistry 309 coalescence prevents impurity
'crud' 322 densities, aqueous and organic phases
316 diluents for 3 12 extractants for 310,310
carryover to electrolyte 3 12
concentration in organic 3 14 calculation 3 18
flowsheets 308, 318 321, 415 industrial data 3 14
mixer-settlers for 12, 313 reactions 309
solvent removal from electrolyte 334 washing, prevents impurity carryover
to electrolyte 3 12
3 76 control 379,377 industrial data 378
advantages 281 construction 273 edge strips 273 electrorefining 273 Southwire continuous bar casting 376,
Stainless steel cathode blanks 273 ,267
Trang 5electrowinning 330
sizes 274
support design 273
surface description 273
Steam concentrate drier 80
Stokes' Law (matte settling) 174
Submerged tuyere smelting
Noranda 104,
Teniente 110
Vanyukov 408
Sulfur, capture and fixation of 217
Sulfur in copper
anodes (electrorefining) 271
cathode copper
ASTM specification 368
electrorefinery 27 1
electrowinning 332,335
minimization of 335
source of 335
converter (blister) copper 249
continuous converting copper
flash 164, 165
Mitsubishi 160
Noranda 167
Cu-S phase diagram 135
direct-to-copper smelting 191, 192
electrorefining behavior 270, 27 1
tire refining removal of 252
air standards for 2 18
capture efficiency 220
concentration in smelter gases 2 19
Sulfur dioxide (SO,)
(see also individual processes,
industrial data)
converter offgas 2 19
smelting furnace offgas 219
liquid, production of 241
electrorefining electrolyte 274, 276
electrowinning electrolyte 334,332
solvent extraction influenced by
Sulfuric acid concentration
309
lixiviant (heap leach) 296
pregnant leach solution 296,314
raffinate 314
blowdown (drying effluent) 224
catalysts for 227
Sulfuric acid manufacture 21 7
cesium lowers initiation
temperature 229
industrial arrangement 233 cleaning offgas 222-224 cooling offgas 222 heat recovery 223 double absorption 23 I , 232 industrial data 234 drying offgas 224,226 efficiency 237 flowsheets 221, 232 industrial data 234 products, principal 240 reactions 227 recent developments 240 single absorption 233 industrial data 238 SO2 to SO3 oxidation 227,23 1
catalysts for 227 ignition temperature 228 cesium lowers ignition temperature 229 degradation temperature 228 flowsheet 232
heat exchangers for 239,232 heat recovery during 24 1 heatup paths 237, 238 industrial data 234-236 reactions 227,228 SO2 capture efficiency 237 SO3 absorption 230 equipment for 239 reactions 230 Surface tension, slag 63
Tailings from flotation
Cu content (ore flotation) 48
Cu content (slag flotation) 182 dewatering 52
storage 52
inanodes 271
in cathode copper 27 1
behavior during electrorefining 270 behavior during slimes leaching 414 Temperatures (see individual processes,
Tellurium
ASTM specification 368
industrial data)
copper casting, Southwire 379, measurerncnt and control
377
Trang 6converting 14 1
lnco flash smelting 99,99
Mitsubishi process 213
Noranda converting 169
Noranda smelting 108
Outokumpu
tuyere pyrometer for 143
direct-to-copper smelting 192
flash smelting 85,84
shell thermography 114
Teniente smelting 113
Teniente matte smelting 1 I O
impurity behavior 1 14
industrial data 112
matte grade, high 1 15
seed matte (used less) 1 I O
tuyere concentrate injection 11 1
Tin concentrations
electrorefining anodes 271
electrorefining cathode copper 271
ASTM specification 368
electrowinning anodes 330
tough pitch copper ASTM
specification 369
Tin behavior during:
electrorefining 270
electrode potential 272
scrap smelting 356-359
Titanium
Tough pitch copper 369
Tuyere
new electrowinning anodes 337
anode furnace 249,248
Noranda converter 166
Noranda smelting furnace 104
Peirce-Smith converter 137, 133
accretion buildup 141, 142
high pressure shrouded tuyere for
148,149
advantages I48
punching 141.8
Teniente smelting furnace 1 I O
Vanyukov smelting 408
Uses, copper and copper alloys 18
oxygen free copper 370
facture 227 cesium 229 degradation temperature 228 dust accumulation affects 229 initiation temperature 228 Vanyukov smelting 408 Viscosity
matte 64 slag
CaO bascd 206 Si02 based 62,63 composition effects 63 temperature effect 63
Waste heat boiler 222,223 Water cooling (smelting furnace) 75,93 White metal (high grade matte) 134, I35
Zinc, behavior during:
converting 137 electrorefining 271 smelting
concentrate smelting 69 lsasmelt 125 Mitsubishi 21 1 Outokumpu flash 86 Noranda 107
Teniente 115
scrap smelting 356-359,356 Zinc concentration in
cathode copper, electrorefining SCR specification 368 scrap smelting products 357
V 2 0 5 catalysts for sulfuric acid manu-
Trang 81
2
3
z 4
E
5
6
7
25
Mn
Tc
Re
54.9380 Manganese
43
(98) Technetium
75
186.207 Rhenium
H
Li
1.0079
Hydrogen
3
6.94,
Lithium
Fe Co 44Ru 45Rh
Os Ir
55.84, 58.9332 Iron Cobalt
101.0, 102.9055 Ruthenium Rhodium
190.2 192.2,
Osmium Iridium
11
Na
22.98977
sodium
44.9559 scandium
39
Y
La
88.9059 Yttrium
57
138.905, anlhanum
19
K
Rb
39.098,
Pottasium
37
85.467,
Rubidium
47.9, 50.9415 Titanium vanadium
Zr Nb 72Hf 73Ta
91.22 92.9064 Zirconium Niobium
178.4, 180.947, Hafnium Tantalum
55
132.9054
Cesium
37
cs
Fr
(223)
Francium
59
Pr
Pa
140.9077
Raseodynuurn
91
231.0359
RMadinium
4
Be
9.01218 Beryllium
u ’3Np ~u
144.2, (145) 150.4 Neodymium Promethium Samarium
238.029 237.0482 (244)
Uranium Neptunium Plutonium
12
Mg
Ca
24.305 Magnesium
20
40.08 Calcium
38
Sr
Ba
Ra
87.62
Slrontium
56
137.33 Barium
58
226.0254 Radium
3(IIIA) 4(IVA) 5(VA) 6(VIA) 7(VIIA) 8 9(VIIIA)
!I
Sc 122Ti 123V 24 Cr
Mo
W
5 1.9%
Chromium
42
95.94
MolyMenun
74
183.8,
Wolfram
Actinide Metals
140.12
Th
232.0381
T h O r i U m
Trang 910 1l(IB) 12(DB)
78 I80
Europium Gadolinium Terbium
Am Cm Bk
Americium Curium Berkehum
2
4.00260 14(IVB) 15(VB) 16(VIB) 17(VIIB) Helium
He
5
B
A1
Ga
In T1
10.81
Boron
13
26.98154
Boron
31
69.72
Gallium
49
114.82
Indium
B1
204.37
Thallium
66
DY
Cf
(251)
162.50
Dysprosium
98
Californium
Si
72.59
SermanluII
50
Sn
Pb
118.6,
Tin
32
74.92 16
Arsenic
51
Sb
Bi
121.7,
hlimony
83
18
0
S
15.999,
Oxygen
16
32.06
Sulphur
i:23 1 lFi
C1 Ar
35.453 39.94,
Chlorine Argon
127.6, 126.9045
Tellurium Iodine
1
-,36
Kr
83.80 Krypton
54
Xe
131.30
Xenon
Trang 10EXTRACTIVE
METALLURGY
OF COPPER
' an invaluable publication to anyone involved with the copper industry.'
NFB Abstracts
This book has become the authority on copper extraction - from ore to pure, cast copper The fourth edition is a near-total rewrite of the now out of print third edition (1994, reprinted in 1996) Its strongest features are its completely updated year 2001 industrial data, its emphasis on new, efficient processes and its up-to-date references While it still emphasizes flash smelting, it also devotes considemble space to submerged tuyere smelting, lance smelting and continuous converting, processes which have all had a significant impact on copper extraction over the last decade Its electrorefining and electrowinning text and data clearly reflect the switch to stainless steel cathode technology and polymer concrete cells Its heap leaching section has been expanded to include on-off heap technology, heap aeration and crushinglagglomeration with an improved understanding of the underlying chemical reactions Lastly, sulfur dioxide capture and sulfuric acid manufacture are explained clearly in terms of their catalytic chemical reactions, industrial equipment and sulfur-capture efficiency
Dr DAVENPORT is Professor of Metallurgical Engineering at the University
of Arizona, Dr KING is in the Design and Engineering Department of Phelps Dodge Mining Company, and Dr SCHLESINGER is Professor of Metallurgical Engineering at the University of Missouri-Rolla