1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

Extractive Metallurgy of Copper part 16 ppt

10 880 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 10
Dung lượng 233,08 KB

Nội dung

electrowinning 330 sizes 274 support design 273 surface description 273 Steam concentrate drier 80 Stokes' Law matte settling 174 Submerged tuyere smelting Noranda 104, Teniente 110 Van

Trang 1

induction furnace for oxygen free

copper 373

Milling (crushing, grinding, flotation)

3 1 (see also Concentration of Cu

ores)

flowsheets 32, 47

orc 31

slag 181

compositions (stoichiometry) 401

general 19

hydrometallurgy 29 1

Mining copper ores

blasting 34

costs 387,389

cut-off grades 19

mine locations 17

production statistics 20

Minerals of copper 19

Mining equipment cost index 386

Mitsubishi continuous smelting/

converting process 199

207

Ca0-Cu20-Fe304 slag for 206,207

control 211

converting furnace 157,158

electric furnace 203, 202

impurity bchavior 21 1

industrial data 204, 205

converter 160,204

flowsheets 200

scrap addition 362

lances 201

matte grade 2 I O

matte and copper siphons 158, 202

reactions 208

scrap smelting by 361,362

smelting furnace 201,202

Mixer-settlers, solvent extraction 312,

12.313

construction materials 3 14

industrial data 3 14

picket fences in 3 16

purpose 316

Nickel

behavior during

electric furnace smelting 406

electrorefining 270

electrode potential 272

scrap smelting 359 smelting 69, 86

anodes, electrorefining 271 cathode copper, electrorefining

ASTM specification 368 electrolyte, electrorefining 276 removal from 276 sulfate byproduct from 276 scrap, removal from 359 tough pitch copper, ASTM specific-

Noranda continuous converting process

concentrations in:

27 1

ation 369

166,166 control 169 industrial data 167 reactions 168

Noranda smelting process 103, 7, 104

concentrates, dry through tuyeres

control 108 impurity behavior 107 industrial data 105 scrap smelting in 107 tuyere pyrometer for 109 I06

Obsolete scrap 344

Offgases 2 19 (see also specific pro- cesses)

sulfuric acid manufacture from 2 17 treatment of 2 I7

flowsheet 221 Old (obsolete) scrap 344

Oleum 235,240 Ores of copper industrial distribution 345

%CU I , 48,296 cut-off grade 19 minerals 19

Outokumpu flash smelting 73 (see also

Flash furnace matte smelting, Outokumpu)

Outokumpu direct-to-copper flash

smelting 187 (see also Flash furnace direct-to-copper smelting)

Outokumpu flash converting 162 industrial data I64

Trang 2

Oxide copper minerals 291

Oxygen enrichment (see also specific

leaching of 291

processes and industrial data tables)

converting 144

advantages 144

upper limit 145

148

direct-to-copper smelting 189, 191

smelting 67

Oxygen in copper

shrouded tuyere overcomes

advantages 67

anodes, electrorefining 249,271

continuous converting copper 160,

converter 'blister' copper 140

direct-to-copper smelting copper 191

oxygen free copper 369

tough pitch copper 378

164

ASTM specification 369

Oxygen in matte 6 I , 64

Oxygen manufacture 8 1

Passivation of electrorefining anodes

Peirce-Smith converting 13 I

alternatives 148

campaign life 138, 147

maximizing 147

concentrate smelting in 146

converter 8, 132, 133, 135

copper blow 134

copper in slag 138-140

recovery of 179, 182

end point determinations 144

feed matte compositions 61, 138, 140

flux, optimum 143

high pressure shrouded tuyeres for

impurity behavior 136

industrial data 138

offgas collection 141

oxygen enrichment ofblast 144, 138

product copper composition 140

productivity maximization 145, 147

reactions I3 1

scrap additions 138, 146

282

precious metals in 143

148, 149

maximizing I46 slag 133, 138, 140 copper recovery from 179, 182 blow 133

formation rate 143 temperature control 141 temperature choice 141, 142 measurement 143

accretion buildup 141, 142

tuyeres 141, 133

high pressure tuyere prevents

148,149

tuyere pyrometer 143 Periodic current reversal, electrorefining avoids passivation 282

Phase diagrams

Ca0-Cu20-Fe0, 207

cu-s 135 Cu2S-FeS 64 Fe0-Fe20,-Si02 62

FeO-FeS-Si02 58

anode slimes treatment 4 13 converting 137

electrorefining 270,271 smelting 69

Platinum mesh - Pb composite

electrowinning anode 336, 337

Polymer concrete electrolytic cells 278

electrorefining, 264, 268, 278, 283

electrowinning 329 Price, copper 28 profitable 389, 398

Production of copper 17, I7

by country 20

electrorefining 20, 24 China 416 electrowinning 20, 26 Chile 27

mining 20 smelting 20, 23 Platinum group metal behavior during:

Profitability of copper extraction 389,

398

Recycling of copper scrap 341, 355 (see also Scrap, copper recovery from) Refinery locations 24

Chinese 416 map 24

Trang 3

production statistics 20, 25

Refining, electrolytic 265 (see also

Electrorefining of copper)

Refining, fire 247 (see also Fire

refining of molten copper)

Refractories (see also specific processes)

converting 137

protection by magnetite 85

smelting 74,91, 104 (see also

Reverberatory matte smelting 403

Roasting for smelting 403

Rod production

consumption 138

specijic smelting processes)

bar casting and rolling 376

industrial data 378

oxygen free copper 379

Hazelett 377

Southwire 376,376, 377

Scrap, copper recovery from 341,355

anode furnaces, in 36 I , 362

automobile scrap 348,349

black copper 359

cable 346,347

converting of 358

blast (shaft) furnace 355,356

cable 346,347

categories of scrap 342,345

collection and physical processing

34 1

converting black copper 359

electronic 350

fire refining 359

home (run around) 342

Mitsubishi process 361, 362

new 342

Noranda process 107

old (obsolete) 344

industrial data 345

Peirce-Smith converters in 361

physical separation processes 341

in primary smelters 360

refining (fire and electrolytic) 359

smelting processes for 355

black copper 356,357

converting of 358

blast (shaft) furnace 355

chemical reactions 357

fire refining 359 flowsheet 356 primary smelter 360 secondary smelter 355 shaft (blast) furnace 355 top blown rotary converter 358 wire 346,347

Selenium behavior during:

converting 137 electrorefining 270 slimes (anode) treatment 4 13 smelting 69, 86, 1 15

anodes 271 cathode copper 271 ASTM specification 368 tough pitch ASTM specification

369 Selenium in copper

Selenium in anode slimes 41 3 Semi-autogenous grinding 35, 36 energyuse 37

industrial data 37 Shaft (blast) furnace smelting concentrate 4 I O scrap 355 Shrouded high pressure tuyere, converting 148, 149

Silver, behavior during converting 137 electrorefining 270,271 smelting 69, 86 Silver in copper anodes 271

cathode copper 271

tough pitch ASTM specification 369 ASTM specification 368

Slags 59 (see also following items)

Slags, CaO based 206 advantages I6 1 CaO-Cu,O-FeO, phase diagram 207 disadvantages 163

flash converting 163

melting points 207 Mitsubishi converting 161, 207

viscosity 161

after electric furnace settling 179 after solidification/flotation 182

industrial data 164

industrial data 160

Slags, copper concentrations in

Trang 4

converting 140

direct-to-copper smelting slag 193

industrial data 138

industrial data 191

limits use of 194

matte grade effect on 69

minimization 175

smelting 61, 69

industrial data 61 (see also spec-

ific processes)

Slags, copper losses in 173

Slags, copper recovery from

furnace for I78

industrial data 179, 180

soIidificationAlotation 18 I

industrial data 182

minimization 175

settling 176

Slags, Si02 based

converter 140

industrial data 138

density 63

electrical conductivity 63

Fe0-Fe20,-Si02 phase diagram 62

FeO-FeS-Si02 phase diagram 58

ionic structure 59, 60

interfacial tension 65

melting point 62

smelting industrial data 61

structure 59, 60

surface tension 63

viscosity 62,63

equation 63

Slimes, anode (electrorefining) 270

Cu recovery from 41 3

pressure leaching 414

cost 393

locations and capacities 23

map 22

production statistics 21

Ausmelt 119

blast (shaft) furnace 4 I O

chemistry 57

converter, smelting in 146

copper losses during 173

dusts from 61

electric furnace 405

flash furnace, Inco 9 1

Smelters

Smelting to matte 57

flash furnace, Outokumpu 73 fluxesfor 61

heats of reaction 5 Isasmelt process I 19 matte from 6 1, 64 minor element behavior 69 Mitsubishi process 199 Noranda process 104 oxygen enrichment during 67 reactions 5, 57

reverberatory 403 shaft (blast) furnace 410 slags from 59,61 viscosity 63 Teniente 1 10 Vanyukov furnace 408 Smelting direct to copper metal 187 Solvent extraction transfer of Cu from pregnant leach solution to elec- trolyte 307,290, 308, 3 / 8 acid concentration effect 309 aqueous carryover, minimization of

312 purpose 3 12 chemistry 309 coalescence prevents impurity

'crud' 322 densities, aqueous and organic phases

316 diluents for 3 12 extractants for 310,310

carryover to electrolyte 3 12

concentration in organic 3 14 calculation 3 18

flowsheets 308, 318 321, 415 industrial data 3 14

mixer-settlers for 12, 313 reactions 309

solvent removal from electrolyte 334 washing, prevents impurity carryover

to electrolyte 3 12

3 76 control 379,377 industrial data 378

advantages 281 construction 273 edge strips 273 electrorefining 273 Southwire continuous bar casting 376,

Stainless steel cathode blanks 273 ,267

Trang 5

electrowinning 330

sizes 274

support design 273

surface description 273

Steam concentrate drier 80

Stokes' Law (matte settling) 174

Submerged tuyere smelting

Noranda 104,

Teniente 110

Vanyukov 408

Sulfur, capture and fixation of 217

Sulfur in copper

anodes (electrorefining) 271

cathode copper

ASTM specification 368

electrorefinery 27 1

electrowinning 332,335

minimization of 335

source of 335

converter (blister) copper 249

continuous converting copper

flash 164, 165

Mitsubishi 160

Noranda 167

Cu-S phase diagram 135

direct-to-copper smelting 191, 192

electrorefining behavior 270, 27 1

tire refining removal of 252

air standards for 2 18

capture efficiency 220

concentration in smelter gases 2 19

Sulfur dioxide (SO,)

(see also individual processes,

industrial data)

converter offgas 2 19

smelting furnace offgas 219

liquid, production of 241

electrorefining electrolyte 274, 276

electrowinning electrolyte 334,332

solvent extraction influenced by

Sulfuric acid concentration

309

lixiviant (heap leach) 296

pregnant leach solution 296,314

raffinate 314

blowdown (drying effluent) 224

catalysts for 227

Sulfuric acid manufacture 21 7

cesium lowers initiation

temperature 229

industrial arrangement 233 cleaning offgas 222-224 cooling offgas 222 heat recovery 223 double absorption 23 I , 232 industrial data 234 drying offgas 224,226 efficiency 237 flowsheets 221, 232 industrial data 234 products, principal 240 reactions 227 recent developments 240 single absorption 233 industrial data 238 SO2 to SO3 oxidation 227,23 1

catalysts for 227 ignition temperature 228 cesium lowers ignition temperature 229 degradation temperature 228 flowsheet 232

heat exchangers for 239,232 heat recovery during 24 1 heatup paths 237, 238 industrial data 234-236 reactions 227,228 SO2 capture efficiency 237 SO3 absorption 230 equipment for 239 reactions 230 Surface tension, slag 63

Tailings from flotation

Cu content (ore flotation) 48

Cu content (slag flotation) 182 dewatering 52

storage 52

inanodes 271

in cathode copper 27 1

behavior during electrorefining 270 behavior during slimes leaching 414 Temperatures (see individual processes,

Tellurium

ASTM specification 368

industrial data)

copper casting, Southwire 379, measurerncnt and control

377

Trang 6

converting 14 1

lnco flash smelting 99,99

Mitsubishi process 213

Noranda converting 169

Noranda smelting 108

Outokumpu

tuyere pyrometer for 143

direct-to-copper smelting 192

flash smelting 85,84

shell thermography 114

Teniente smelting 113

Teniente matte smelting 1 I O

impurity behavior 1 14

industrial data 112

matte grade, high 1 15

seed matte (used less) 1 I O

tuyere concentrate injection 11 1

Tin concentrations

electrorefining anodes 271

electrorefining cathode copper 271

ASTM specification 368

electrowinning anodes 330

tough pitch copper ASTM

specification 369

Tin behavior during:

electrorefining 270

electrode potential 272

scrap smelting 356-359

Titanium

Tough pitch copper 369

Tuyere

new electrowinning anodes 337

anode furnace 249,248

Noranda converter 166

Noranda smelting furnace 104

Peirce-Smith converter 137, 133

accretion buildup 141, 142

high pressure shrouded tuyere for

148,149

advantages I48

punching 141.8

Teniente smelting furnace 1 I O

Vanyukov smelting 408

Uses, copper and copper alloys 18

oxygen free copper 370

facture 227 cesium 229 degradation temperature 228 dust accumulation affects 229 initiation temperature 228 Vanyukov smelting 408 Viscosity

matte 64 slag

CaO bascd 206 Si02 based 62,63 composition effects 63 temperature effect 63

Waste heat boiler 222,223 Water cooling (smelting furnace) 75,93 White metal (high grade matte) 134, I35

Zinc, behavior during:

converting 137 electrorefining 271 smelting

concentrate smelting 69 lsasmelt 125 Mitsubishi 21 1 Outokumpu flash 86 Noranda 107

Teniente 115

scrap smelting 356-359,356 Zinc concentration in

cathode copper, electrorefining SCR specification 368 scrap smelting products 357

V 2 0 5 catalysts for sulfuric acid manu-

Trang 8

1

2

3

z 4

E

5

6

7

25

Mn

Tc

Re

54.9380 Manganese

43

(98) Technetium

75

186.207 Rhenium

H

Li

1.0079

Hydrogen

3

6.94,

Lithium

Fe Co 44Ru 45Rh

Os Ir

55.84, 58.9332 Iron Cobalt

101.0, 102.9055 Ruthenium Rhodium

190.2 192.2,

Osmium Iridium

11

Na

22.98977

sodium

44.9559 scandium

39

Y

La

88.9059 Yttrium

57

138.905, anlhanum

19

K

Rb

39.098,

Pottasium

37

85.467,

Rubidium

47.9, 50.9415 Titanium vanadium

Zr Nb 72Hf 73Ta

91.22 92.9064 Zirconium Niobium

178.4, 180.947, Hafnium Tantalum

55

132.9054

Cesium

37

cs

Fr

(223)

Francium

59

Pr

Pa

140.9077

Raseodynuurn

91

231.0359

RMadinium

4

Be

9.01218 Beryllium

u ’3Np ~u

144.2, (145) 150.4 Neodymium Promethium Samarium

238.029 237.0482 (244)

Uranium Neptunium Plutonium

12

Mg

Ca

24.305 Magnesium

20

40.08 Calcium

38

Sr

Ba

Ra

87.62

Slrontium

56

137.33 Barium

58

226.0254 Radium

3(IIIA) 4(IVA) 5(VA) 6(VIA) 7(VIIA) 8 9(VIIIA)

!I

Sc 122Ti 123V 24 Cr

Mo

W

5 1.9%

Chromium

42

95.94

MolyMenun

74

183.8,

Wolfram

Actinide Metals

140.12

Th

232.0381

T h O r i U m

Trang 9

10 1l(IB) 12(DB)

78 I80

Europium Gadolinium Terbium

Am Cm Bk

Americium Curium Berkehum

2

4.00260 14(IVB) 15(VB) 16(VIB) 17(VIIB) Helium

He

5

B

A1

Ga

In T1

10.81

Boron

13

26.98154

Boron

31

69.72

Gallium

49

114.82

Indium

B1

204.37

Thallium

66

DY

Cf

(251)

162.50

Dysprosium

98

Californium

Si

72.59

SermanluII

50

Sn

Pb

118.6,

Tin

32

74.92 16

Arsenic

51

Sb

Bi

121.7,

hlimony

83

18

0

S

15.999,

Oxygen

16

32.06

Sulphur

i:23 1 lFi

C1 Ar

35.453 39.94,

Chlorine Argon

127.6, 126.9045

Tellurium Iodine

1

-,36

Kr

83.80 Krypton

54

Xe

131.30

Xenon

Trang 10

EXTRACTIVE

METALLURGY

OF COPPER

' an invaluable publication to anyone involved with the copper industry.'

NFB Abstracts

This book has become the authority on copper extraction - from ore to pure, cast copper The fourth edition is a near-total rewrite of the now out of print third edition (1994, reprinted in 1996) Its strongest features are its completely updated year 2001 industrial data, its emphasis on new, efficient processes and its up-to-date references While it still emphasizes flash smelting, it also devotes considemble space to submerged tuyere smelting, lance smelting and continuous converting, processes which have all had a significant impact on copper extraction over the last decade Its electrorefining and electrowinning text and data clearly reflect the switch to stainless steel cathode technology and polymer concrete cells Its heap leaching section has been expanded to include on-off heap technology, heap aeration and crushinglagglomeration with an improved understanding of the underlying chemical reactions Lastly, sulfur dioxide capture and sulfuric acid manufacture are explained clearly in terms of their catalytic chemical reactions, industrial equipment and sulfur-capture efficiency

Dr DAVENPORT is Professor of Metallurgical Engineering at the University

of Arizona, Dr KING is in the Design and Engineering Department of Phelps Dodge Mining Company, and Dr SCHLESINGER is Professor of Metallurgical Engineering at the University of Missouri-Rolla

Ngày đăng: 10/08/2014, 11:22

TỪ KHÓA LIÊN QUAN

w