Đề thi dự bị môn toán khối B
ĐỀ ÔN TẬP SỐ 1 THI ĐẠI HỌC, CAO ĐẲNG Môn thi: TOÁN, khối B Thời gian làm bài 180 phút, không kể thời gian phát đề PHẦN CHUNG CHO TẤT CẢ THÍ SINH Câu I (2 điểm) Cho hàm số 3 23 3 ( 2) 1 (1)y x x m m x , với m là tham số thực. 1. Khảo sát sự biến thiên và vẽ đồ thị của hàm số (1) khi m=0. 2. Tìm các giá trị của m để hàm số (1) có hai giá trị cực trị cùng dấu. Câu II (2 điểm) 1. Giải phương trình 12sin sin 23 6 2x x . 2. Giải phương trình 10 1 3 5 9 4 2 2x x x x (x ). Câu III (2 điểm) Trong không gian với hệ tọa độ Oxyz, cho các điểm A(5 ; 4 ; 3), B(6 ; 7 ; 2) và đường thẳng 11 2 3: .2 3 1x y zd 1. Viết phương trình đường thẳng d2 đi qua hai điểm A và B. Chứng minh rằng hai đường thẳng d1 và d2 chéo nhau. 2. Tìm điểm C thuộc d1 sao cho tam giác ABC có diện tích nhỏ nhất. Tính giá trị nhỏ nhất đó. Câu IV (2 điểm) 1. Tính tích phân 201.4 1xI dxx 2. Cho ba số dương x, y, z thỏa mãn hệ thức .3yzx y zx Chứng minh rằng 2 3 3( ).6x y z PHẦN RIÊNG:Thí sinh chỉ được làm 1 trong 2 câu : V.a hoặc V.b.Câu V.a Theo chương trình KHÔNG phân ban (2 điểm) 1. Cho số nguyên n thỏa mãn đẳng thức 3 335( 1)( 2)n nA Cn n (n ≥ 3 và ,k kn nA C lần lượt là số chỉnh hợp, số tổ hợp chập k của n phần tử). Hãy tính tổng 2 2 2 3 22 3 . ( 1) .n nn n nS C C n C 2. Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC với 5, ( 1; 1)AB C , đường thẳng AB có phương trình x + 2y – 3 = 0 và trọng tâm của tam giác ABC thuộc đường thẳng x + y – 2 = 0. Hãy tìm tọa độ các đỉnh A và B. Câu V.b Theo chương trình phân ban (2 điểm) 1. Giải phương trình 2 122log (2 2) log (9 1) 1.x x 2. Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng a, 3SA a và SA vuông góc với mặt phẳng đáy. Tính theo a thể tích khối tứ diện SACD và tính cosin của góc giữa hai đường thẳng SB, AC. ĐÁP ÁN – THANG ĐIỂM Môn: TOÁN (đề số 1), khối B Câu Nội dung Điểm I 2,00 1 Khảo sát sự biến thiên và vẽ đồ thị của hàm số (1,00 điểm) Khi m=0 hàm số trở thành 3 23 1.y x x Tập xác định: Sự biến thiên: ' 2 '3 6 ; 0 0y x x y x hoặc x = 2. 0,25 yCĐ = y(0) = -1, yCT = y(2) = -5. 0,25 Bảng biến thiên: 0,25 Đồ thị: 0,25 2 Tìm các giá trị của m…(1,00 điểm) Ta có ' 23 6 3 ( 2) 3( )( 2)y x x m m x m x m '0y x m hoặc x = m + 2. 2 2( ) (1 2 )( 2 1), ( 2) (2 5)( 2 1).y m m m m y m m m m 0,50 Hàm số có hai cực trị cùng dấu khi và chỉ khi m thỏa mãn hệ 2( ). ( 2) 0m my m y m Giải hệ trên ta được các giá trị cần tìm của m là 5 12 21mm 0,50 II 2,00 1 Giải phương trình lượng giác…(1,0 điểm) Phương trình đã cho tương đương với phương trình -5 -1 2 0 y x x'y y + + 0 0 -1 2 0 -5 - 21 2sin 1sin 3cos 3 sin .cos2 2(sin 3cos )(1 sin ) 0.xx x x xx x x 0,50 sin 3 cos 0 3 .3x x tgx k 1 sin 0 2 .2x x k Nghiệm của phương trình đã cho là: 2 , .3 2x k x k k Z 0,50 2 Giải phương trình vô tỷ (1,00 điểm) Điều kiện: 5.3x Phương trình đã cho tương đương với 10 1 2 2 9 4 3 5 (1).x x x x Vì 53x nên cả hai vế của (1) đều dương. Do đó: (1) 12 1 2 (10 1)(2 2) 12 1 2 (9 4)(3 5)x x x x x x 0,50 267 15 18 0 3 .7x x x hay x Kết hợp với điều kiện ta được nghiệm của phương trình là x = 3. 0,50 III 2,00 1 Viết phương trình đường thẳng d2 đi qua…(1,00 điểm) Đường thẳng d2 đi qua điểm A(5; 4; 3) và có vectơ chỉ phương AB= (1; 3; -1) nên có phương trình 5 4 3.1 3 1x y z 0,50 Đường thẳng d1 qua M(1; 2; 3), có vectơ chỉ phương (2;3;1).u Ta có: , ( 6;3;3) à MA=(4;2;0).u AB v , . 18 0,u AB MA suy ra d1 và d2 chéo nhau 0,50 2 Tìm điểm C thuộc d1…(1,00 điểm) Gọi IJ là đoạn vuông góc chung của d1 và d2 (I d1, J d2). Ta có I(1 + 2t; 2 + 3t; 3 + t), J(5 + s; 4 + 3s; 3 - s), (4 2 ;2 3 3 ; ).IJ t s t s t s 0,25 IJ là đoạn vuông góc chung của d1 và d2 nên . 0 2(4 2 ) 3(2 3 3 ) ( ) 0 1(4 2 ) 3(2 3 3 ) ( ) 0 0 0IJ u t s t s t s tt s t s t s sIJ AB Do đó: I(3; 5; 4), JA(5; 4; 3), IJ = 2 2 22 ( 1) ( 1) 6. 0,25 2 2 21 3 ( 1) 11.AB 21 1 1 66. ( , ) . 11. 62 2 2 2ABCS AB d C d AB IJ (đvdt). 0,25 662ABCS (đvdt) là nhỏ nhất, đạt được khi và chỉ khi CI(3; 5; 4). 0,25 IV 2,00 1 Tính tích phân…(1,00 điểm) Đặt 214 1 .4 2t tdtt x x dx Khi x = 0 thì t = 1; khi x = 2 thì t = 3. 0,25 Do đó 32 3133 318 24 8t t tI dt 0,50 11.6 0,25 2 Chứng minh bất đẳng thức (1,00 điểm) Ta có 22 2( )12 12( ) ( )3 12yz y zx y z x y z x y zx x 212 12. 1 0.x xy z y z 0,50 2 3 3.6xy z Do đó 2 3 3( )6x y z (vì x, y, z dương). 0,50 V.a 2,00 1 Tính tổng (1,00 điểm) 3 335 35 30.( 1)( 2) 6n nA C nn nn n 0,50 Ta có 0 1(1 ) . .n n nn n nx C C x C x Lấy đạo hàm hai vế theo x ta được 1 1 2 1(1 ) 2 . .n n xn n nn x C C x nC x Nhân hai vế với x và lấy đạo hàm theo x ta được 1 2 1 2 2 2 1(1 ) ( 1)(1 ) 2 . .n n n nn n nn x n n x x C C x n C x Thay x = -1 và n = 30 vào đẳng thức trên ta được 1 2 2 29 2 3030 30 30( 1)2 . ( 1) 0C C n C Do đó 2 2 30 2 30 130 30 302 . ( 1) 30.S C n C C 0,50 2 Tìm tọa độ các đỉnh A và B (1,00 điểm) Gọi I(x ; y) là trung điểm của AB và G(xG ; yG) là trọng tâm của ABC. Do 23CG CI nên 2 1 2 1; .3 3G Gx yx y Suy ra tọa độ điểm I thỏa mãn hệ phương trình 2 3 0(5; 1)2 1 2 12 03 3x yIx y . 0,50 52 2ABIA IB nên tọa độ các điểm A, B là hai nghiệm khác nhau của hệ 2 22 3 0 45 1( 5) ( 1)4 2x y xx y y hoặc 63.2xy Tọa độ của các điểm A, B là: 1 34; , 6; .2 2 0,50 V.b 2,00 1 Giải phương trình logarit (1,00 điểm) Điều kiện: 1.9x Phương trình đã cho tương đương với phương trình 22 22 22 2 2 2 2log (2 2) log (9 1) 1log (2 2) log (9 1) log 2 log (2 2) log (18 2)x xx x x x 0,50 2 2(2 2) (18 2) 2 5 3 0x x x x x = 1 hoặc 3.2x Đối chiếu điều kiện suy ra nghiệm của phương trình là x = 1 hay3.2x 0,50 2 Tính theo a thể tích khối tứ diện SACD…(1,00 điểm) Thể tích của khối tứ diện SACD là 31 1 3. . .3 2 6SACDaV DA DC SA (đvtt). 0,50 Gọi M là trung điểm của SD. Ta có OM//SB nên góc (SB;AC) = góc (OM; OC). Tam giác vuông SAB có 2 2 2 23 2SB SA AB a a a nên OM = a Tương tự, SD = 2a MD = a CM = a2. Xét tam giác OMC, ta có 2 2 22 2cos cos( , ) .2 . 4 4OM OC MCCOM SB ACOM OC Cosin của góc giữa SB, AC là 2.4 0,50 A O M C D B S Nếu thí sinh làm bài không theo cách nêu trong đáp án mà vẫn đúng thì được đủ điểm từng phần như đáp án quy định. Hướng dẫn: Trung tâm Luyện thi Vĩnh Viễn. . ĐỀ ÔN TẬP SỐ 1 THI ĐẠI HỌC, CAO ĐẲNG Môn thi: TOÁN, khối B Thời gian làm b i 180 phút, không kể thời gian phát đề PHẦN CHUNG CHO TẤT. thẳng SB, AC. ĐÁP ÁN – THANG ĐIỂM Môn: TOÁN (đề số 1), khối B Câu Nội dung Điểm I 2,00 1 Khảo sát sự biến thi n và vẽ đồ thị của hàm số (1,00