1. Trang chủ
  2. » Khoa Học Tự Nhiên

2008x2010 x4016 x 20Cho dãy số xn thỏa mãn:xn 1 1 , n 4*xn 1 (1 xn )Chứng minh pptx

2 246 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 2
Dung lượng 35,44 KB

Nội dung

vßng 1 Bµi 1 Gi¶i ph¬ng tr×nh :   2008 2010 4016 2 x x x Bµi 2 Cho dãy số   n x thỏa mãn: * 1 0 1 1 (1 ) , 4 n n n x x x n              Chứng minh rằng: 1 lim x 2 n  Bµi 3 Cho các số dương x,y, z và x + y + z = 1. Chứng minh rằng: 4 4 4 1 1 1 1 1 1 768 x y z                         Bµi 4 Cho tam giác ABC và D là chân đường cao hạ từ A. Gọi d là đường thẳng đi qua D và nằm trong mặt phẳng chứa tam giác ABC, E và F là các điểm nằm trên đường thẳng d sao cho AE BE , AF CF và E, F không trùng D. Gọi M, N là các trung điểm tương ứng của BC và EF. Chứng minh rằng AN NM . vßng 2 Bµi 1 Gi¶i hÖ ph¬ng tr×nh: 2009 2 2009 2 2009 2 3 3 ln( 1) 3 3 ln( 1) 3 3 ln( 1) x x x x y y y y y z z z z z x                          Bµi 2 Hàm số f(x) xác định với mọi x thỏa mãn các điều kiện sau: 2 2 (1) 2010 ( ) ( ) ( ) ( ) 4 ( ), , f a b f a b a b f a b ab a b a b               Tìm hàm số f(x). Bµi 3 Chứng minh rằng nếu abc (số tự nhiên có 3 chữ số trong hệ thập phân) là một số nguyên tố thì phương trình ax 2 + bx + c = 0 không có nghiệm hữu tỉ. Bµi 4 Cho 4 đường thẳng d 1 , d 2, d 3 , d 4 đôi một song song và không có ba đường thẳng nào nằm trên cùng một mặt phẳng. Một mặt phẳng (P) cắt chúng theo thứ tự tại A, B, C, D. Một mặt phẳng (P’) cắt chúng theo thứ tự tại A’, B’ , C’, D’ sao cho D  D’. Chứng minh rằng hai khối tứ diện D’ABC và DA’B’C’ có thể tích bằng nhau. . vßng 1 Bµi 1 Gi¶i ph¬ng tr×nh :   2008 2 010 4 016 2 x x x Bµi 2 Cho dãy số   n x thỏa m n: * 1 0 1 1 (1 ) , 4 n n n x x x n              Chứng minh rằng: 1 lim x 2 n  Bµi. minh rằng n u abc (số tự nhi n có 3 chữ số trong hệ thập ph n) là một số nguy n tố thì phương trình ax 2 + bx + c = 0 không có nghiệm hữu tỉ. Bµi 4 Cho 4 đường thẳng d 1 , d 2, d 3 , d 4 đôi. tương ứng của BC và EF. Chứng minh rằng AN NM . vßng 2 Bµi 1 Gi¶i hÖ ph¬ng tr×nh: 2009 2 2009 2 2009 2 3 3 ln( 1) 3 3 ln( 1) 3 3 ln( 1) x x x x y y y y y z z z z z x            

Ngày đăng: 30/07/2014, 18:20

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w