Trường THPT Vĩnh Định. Lớp 12a2 khóa 2008-2011 ĐỀ THI THỬ + ĐÁP ÁN ĐỀ 10+11 TUYỂN SINH ĐẠI HỌC- ĐỀ SỐ 10 Thời gian làm bài: 180 phút I. PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm) Câu I (2,0 điểm) Cho hàm số ( ) 3 2 2 3 2 y x 3mx 3 1 m x m m = - + + - + - (1) 1. Khảo sát sự biến thiên và vẽ đồ thị hàm số (1) khi m 1 = 2. Viết phương trình đường thẳng qua hai điểm cực trị của đồ thị hàm số (1) Câu II (2,0 điểm) 1. Giải phương trình: 1 2tan x cot 2x 2sin2x+ sin2x + = 2. Giải phương trình: ( ) 3x x 3 x 1 x 1 12 2 6.2 1 2 2 - - - + = Câu III (1,0 điểm) Tính tích phân: 2 0 2 x I dx x 2 - = + ò Câu IV (1,0 điểm) Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a. Gọi G là trọng tâm tam giác SAC và khoảng cách từ G đến mặt bên (SCD) bằng a 3 6 . Tính khoảng cách từ tâm O của đáy đến mặt bên (SCD) và tính thể tích khối chóp S.ABCD. Câu V (1,0 điểm) Tìm giá trị nhỏ nhất của hàm số: 2 11 7 y x 4 1 2x x æ ö ÷ ç = + + + ÷ ç ÷ ç è ø với x 0 > II. PHẦN RIÊNG (3 điểm) Thí sinh chỉ được làm một trong hai phần (phần 1 hoặc 2). 1. Theo chương trình Chuẩn: Câu VIa (2.0 điểm) 1. Trong mặt phẳng Oxy , cho họ đường cong m (C ) có phương trình: ( ) 2 2 2 1 x y 2mx 2 m 2 y 2m 4m 0 2 + - + + + + - = Chứng minh rằng m (C ) luôn là một đường tròn có bán kính không đổi; Tìm tập hợp tâm các đường tròn m (C ) suy ra rằng m (C ) luôn luôn tiếp xúc với hai đường thẳng cố định. 2. Trong không gian (Oxyz), viết phương trình mặt phẳng đi qua điểm M(9;1;1) , cắt các tia Ox, Oy , Oz tại A, B, C sao cho thể tích tứ diện OABC có giá trị nhỏ nhất. Câu VII.a (1,0 điểm) Một người có 7 bi xanh, 5 bi đỏ, 4 bi đen. Yêu cầu cần lấy ra 7 bi đủ ba màu. Hỏi có mấy cách lấy. 2. Theo chương trình Nâng cao: Câu VIb (2,0 điểm) 1. Trong mặt phẳng Oxy, lập phương trình đường thẳng ( ) D đi qua gốc tọa độ O và cắt đường tròn ( ) ( ) ( ) 2 2 C : x 1 y 3 25 - + + = theo một dây cung có độ dài bằng 8. 2. Trong không gian (Oxyz), viết phương trình mặt phẳng ( ) a đi qua điểm M(9;1;1) và cắt các tia Ox, Oy, Oz lần lượt tại A, B, C sao cho OA OB OC + + có giá trị nhỏ nhất. Câu VII.b (1,0 điểm) Đội học sinh giỏi của một trường gồm 18 em, trong đó có 7 học sinh khối 12, 6 học sinh khối 11 và 5 học sinh khối 10. Hỏi có bao nhiêu cách cử 8 học sinh trong đội đi dự trại hè sao cho mỗi khối có ít nhất một em được chọn. Hết KẾT QUẢ ĐỀ 10 I. PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm) Câu I (2,0 điểm) 1. Tự giải 2. 2 y 2x m m = - + Câu II (2,0 điểm) 1. x k 3 p = ± + p 2. x 1 = Câu III (1,0 điểm) I 2 = p + Câu IV (1,0 điểm) 3 a 3 a 3 d , V 4 6 = = Câu V (1,0 điểm) 15 min y 2 = II. PHẦN RIÊNG (3 điểm) Thí sinh chỉ được làm một trong hai phần (phần 1 hoặc 2). 1. Theo chương trình Chuẩn: Câu VIa (2.0 điểm) ( ) ( ) 1 2 1) (d) : x y 2 0, : x y 5 0, : x y 1 0 + + = D + + = D + - = 2. x 9y 9z 27 0 + + - = Câu VII.a (1,0 điểm) 10283 cách 2. Theo chương trình Nâng cao: Câu VIb (2,0 điểm) 1. y 0;3x 4y 0 = - = 2. x 3y 3z 15 0 + + - = Câu VII.b (1,0 điểm) 41811 cách Hết ĐỀ THI THỬ TUYỂN SINH ĐẠI HỌC- ĐỀ SỐ 11 Thời gian làm bài: 180 phút I. PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm) Câu I (2,0 điểm) Cho hàm số x 3 y x 1 + = + (1) có đồ thị là (C) 1. Khảo sát sự biến thiên và vẽ đồ thị hàm số (1) 2. Chứng minh rằng đường thẳng ( ) d : y 2x m = + luôn cắt (C) tại hai điểm phân biệt M, N. Xác định m để độ dài đoạn MN là nhỏ nhất. Câu II (2,0 điểm) 1. Giải phương trình: ( )( ) 1 tan x 1 sin2x 1 tan x - + = + 2. Giải phương trình: ( ) 3 9x 3 4 2 log x .log 3 1 1 log x - - = - Câu III (1,0 điểm) Tính tích phân: 2 2 1 dx I x 2x 4 - = + + ò Câu IV (1,0 điểm) Cho khối chóp S.ABC có đường cao SA 2a = , tam giác ABC vuông ở C có AB 2a = , · 0 CAB 30 = . Gọi H và K lần lượt là hình chiếu của A trên SC và SB. Tính thể tích khối chóp H.ABC. Câu V (1,0 điểm) Cho hai số dương x, y thay đổi thỏa mãn điều kiện x y 4 + ³ . Tìm giá trị nhỏ nhất của biểu thức: 2 3 2 3x 4 2 y A 4x y + + = + II. PHẦN RIÊNG (3 điểm) Thí sinh chỉ được làm một trong hai phần (phần 1 hoặc 2). 1. Theo chương trình Chuẩn: Câu VIa (2.0 điểm) 1. Trong mặt phẳng Oxy , cho đường tròn: ( ) 2 2 C : x y 2x 4y 4 0 + - + - = có tâm I và điểm M( 1; 3) - - . Viết phương trình đường thẳng (d) đi qua điểm M và cắt (C) tại hai điểm phân biệt A và B sao cho tam giác IAB có diện tích lớn nhất. 2. Trong không gian (Oxyz), viết phương trình mặt phẳng ( ) a đi qua giao tuyến (d) của hai mặt phẳng ( ) P : 2x y 3z 1 0,(Q) : x y z 5 0 - + + = + - + = , đồng thời vuông góc với mặt phẳng ( ) R : 3x y 1 0 - + = Câu VII.a (1,0 điểm) Từ một tổ gồm 7 học sinh nữ và 5 học sinh nam cần chọn ra 6 em trong đó số học sinh nữ phải nhỏ hơn 4. Hỏi có bao nhiêu cách chọn như vậy. 2. Theo chương trình Nâng cao: Câu VIb (2,0 điểm) 1. Trong mặt phẳng Oxy, cho đường thẳng ( ) d : x y 3 0 - + = và đường tròn ( ) 2 2 C : x y 2x 2y 1 0 + - - + = . Tìm tọa độ điểm M nằm trên (d) sao cho đường tròn tâm M có bán kính gấp đôi bán kính đường tròn (C), tiếp xúc ngoài với đường tròn (C). 2. Trong không gian (Oxyz), cho hai điểm I(0;0;1), K(3;0;0) . Viết phương trình mặt phẳng đi qua hai điểm I, K và tạo với mặt phẳng Oxy một góc bằng 0 30 Câu VII.b (1,0 điểm) Một hộp đựng 4 viên bi đỏ, 5 viên bi trắng và 6 viên bi vàng. Người ta chọn ra 4 viên bi từ hộp đó. Hỏi có bao nhiêu cách chọn trong số viên bi lấy ra không đủ cả ba màu Hết KẾT QUẢ ĐỀ 11 I. PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm) Câu I (2,0 điểm) 1. Tự giải 2. min MN 2 5,m 3 = = Câu II (2,0 điểm) 1. x k ,x k 4 p = p = - + p 2. 1 x , x 81 3 = = Câu III (1,0 điểm) 3 I 9 p = Câu IV (1,0 điểm) 3 a 3 V 7 = Câu V (1,0 điểm) 9 min y , x y 2 2 = = = II. PHẦN RIÊNG (3 điểm) Thí sinh chỉ được làm một trong hai phần (phần 1 hoặc 2). 1. Theo chương trình Chuẩn: Câu VIa (2.0 điểm) x y 4 0;7x y 10 0 + + = + + = 2. 3x 9y 13z 33 0 + - + = Câu VII.a (1,0 điểm) 462 cách 2. Theo chương trình Nâng cao: Câu VIb (2,0 điểm) 1. 1 2 M (1;4),M ( 2;4) - 2. x 2y 3z 3 0 ± + - = Câu VII.b (1,0 điểm) 645 cách Hết . Trường THPT Vĩnh Định. Lớp 12a2 khóa 200 8-2 011 ĐỀ THI THỬ + ĐÁP ÁN ĐỀ 10 +11 TUYỂN SINH ĐẠI HỌC- ĐỀ SỐ 10 Thời gian làm bài: 180 phút I. PHẦN. 4y 0 = - = 2. x 3y 3z 15 0 + + - = Câu VII.b (1,0 điểm) 41 811 cách Hết ĐỀ THI THỬ TUYỂN SINH ĐẠI HỌC- ĐỀ SỐ 11 Thời gian làm bài: 180 phút I. PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0. Câu VII.b (1,0 điểm) Đội học sinh giỏi của một trường gồm 18 em, trong đó có 7 học sinh khối 12, 6 học sinh khối 11 và 5 học sinh khối 10. Hỏi có bao nhiêu cách cử 8 học sinh trong đội đi dự