1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề thi thử đại học môn toán khối A năm 2011 THPT Chuyên Vĩnh Phúc docx

2 421 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 2
Dung lượng 151,72 KB

Nội dung

TỔ TOÁN – TIN TRƯỜNG THPT CHUYÊN VĨNH PHÚC SỞ GIÁO DỤC VÀ ĐÀO TẠO VĨNH PHÚC TRƯỜNG THPT CHUYÊN ĐỀ THÌ THỬ ĐẠI HỌC NĂM 2011 MÔN: TOÁN; KHỐI A Thời gian làm bài 180 phút (Tuần 3, tháng 3 – 2011, trên www99.cvp.vn) Đáp án đề thi sẽ đăng ở tuần 4, tháng 3 PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm) Câu I (2 điểm). Cho hàm số 1 1 x y x    1. Khảo sát sự biến thiên và vẽ đồ thị   C của hàm số đã cho. 2. Giả sử A, B, C là ba điểm không thẳng hàng nằm trên đồ thị   C . Chứng minh rằng trực tâm của tam giác ABC cũng nằm trên   C . Câu II (2,0 điểm) 1. Giải phương trình cot 8tan8 tan 2tan 2 4tan 4 32 x x x x x      . 2. Tìm m để phương trình sau có nghiệm   2 2 2 4 2 2 1 1 1 2 7 x m x x x x x x m              x   Câu III (1 điểm) Tính tích phân      4 0 sin3 cos3 1 2sin 2 1 sin 2 x x dx I x x       Câu IV (1 điểm) Cho hình chóp S.ABC thỏa mãn 0 SB SC AB BC CA a       . Tính theo a thể tích khối chóp S.ABC, biết rằng góc giữa hai mặt phẳng (SAB) và (SAC) bằng 0 60 . Câu V (1 điểm) Cho các số dương , , x y z thỏa mãn điều kiện 1 1 1 1 x y z    . Chứng minh rằng 2 2 2 1 1 1 1 4 x x y y z z       . PHẦN RIÊNG (3 điểm): Thí sinh chỉ được làm một trong hai phần (phần A hoặc B) A. Theo chương trình Chuẩn Câu VIa (2 điểm) 1. Trong mặt phẳng với hệ trục tọa độ Oxy; cho đường tròn (C): 2 2 5 3 6 0 x y x y      . Tìm tọa độ các đỉnh của hình vuông ABCD; biết rằng hai đỉnh A, B nằm trên đường thẳng 2 0 y   và hai đỉnh C, D nằm trên đường tròn (C). 2. Trong không gian với hệ trục tọa độ Oxyz, cho ba đường thẳng: TỔ TOÁN – TIN TRƯỜNG THPT CHUYÊN VĨNH PHÚC 1 2 3 1 1 1 2 1 2 1 : ; : ; : 2 1 1 1 1 2 2 3 3 x y z x y z x y z d d d                . Lập phương trình đường thẳng  vuông góc với 3 d và cắt 1 2 , d d lần lượt tại M, N sao cho 13 MN  . Câu VII.a (1 điểm) Cho các số phức , , x y z thỏa mãn 1 x y z    và 1 1 1 x y z   là một số thực. Chứng minh rằng 2 2 2 x y z   là một số thực. B. Theo chương trình nâng cao Câu VI.b (2 điểm) 1. Trong mặt phẳng với hệ trục tọa độ Oxy, cho tam giác ABC có tọa độ các đỉnh lần lượt là       1;1 ; 7;1 ; 1;4 A B C . Tìm tọa độ các đỉnh của hình chữ nhật MNPQ sao cho các đỉnh M, N nằm trên cạnh BC; các đỉnh P, Q lần lượt nằm trên các cạnh AC, AB và 5 4 MN NP  . 2. Trong mặt phẳng với hệ trục tọa độ Oxyz, cho đường thẳng 3 1 1 : 2 1 1 x y z d       và mặt phẳng   : 2 0 P x y z     . Hãy lập phương trình đường thẳng  nằm trong mặt phẳng   P , vuông góc với đường thẳng d và cách đường thẳng d một khoảng bằng 2 21 . Câu VII.b (1 điểm) Cho các số phức 1 2 , z z thỏa mãn 1 2 1 2; 4 2 z z     . Tìm tất cả các số phức 1 2 , z z sao cho 1 2 z z  đạt giá trị lớn nhất. . TOÁN – TIN TRƯỜNG THPT CHUYÊN VĨNH PHÚC SỞ GIÁO DỤC VÀ ĐÀO TẠO VĨNH PHÚC TRƯỜNG THPT CHUYÊN ĐỀ THÌ THỬ ĐẠI HỌC NĂM 2011 MÔN: TOÁN; KHỐI A Thời gian làm bài 180 phút (Tuần 3, tháng 3 – 2011, . IV (1 điểm) Cho hình chóp S.ABC th a mãn 0 SB SC AB BC CA a       . Tính theo a thể tích khối chóp S.ABC, biết rằng góc gi a hai mặt phẳng (SAB) và (SAC) bằng 0 60 . Câu V (1 điểm). đường thẳng 2 0 y   và hai đỉnh C, D nằm trên đường tròn (C). 2. Trong không gian với hệ trục t a độ Oxyz, cho ba đường thẳng: TỔ TOÁN – TIN TRƯỜNG THPT CHUYÊN VĨNH PHÚC 1 2 3 1 1 1 2 1 2

Ngày đăng: 29/07/2014, 23:21

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w