1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Bài tập toán cao cấp Tập 1 part 8 pptx

28 303 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 28
Dung lượng 398,74 KB

Nội dung

5.2. Co . so . ’ .D - ˆo ’ ico . so . ’ 195 1 + Ch´u . ng minh r˘a ` ng E 1 ,E 2 lˆa . p th`anh co . so . ’ cu ’ a R 2 . 2 + T`ım to . adˆo . vecto . x trong co . so . ’ E 1 ,E 2 . 3 + T`ım to . adˆo . cu ’ a vecto . x trong co . so . ’ E 2 ,E 1 . Gia ’ i. 1 + Ta lˆa . p ma trˆa . n c´ac to . adˆo . cu ’ a E 1 v`a E 2 : A =  1 −2 21  ⇒ detA =5=0. Do d ´ohˆe . hai vecto . E 1 ,E 2 l`a dltt trong khˆong gian 2-chiˆe ` u R 2 nˆen n´o lˆa . p th`anh co . so . ’ . 2 + Trong co . so . ’ d˜a cho vecto . x c´o to . adˆo . l`a (3, −4). Gia ’ su . ’ trong co . so . ’ E 1 ,E 2 vecto . x c´o to . adˆo . (x 1 ,x 2 ). Ta lˆa . p ma trˆa . n chuyˆe ’ nt`u . co . so . ’ E 1 , E 2 dˆe ´ nco . so . ’ E 1 ,E 2 : T =  12 −21  ⇒ T −1 = 1 5  12 −21  Khi d ´o  x 1 x 2  = T −1  3 −4  ⇒  x 1 x 2  = 1 5  1 −2 21  3 −4  = 1 5  11 2  =    11 5 2 5    . Vˆa . y x 1 = 11 5 , x 2 = +2 5 . 3 + V`ı E 1 ,E 2 l`a co . so . ’ cu ’ a R 2 nˆen E 2 ,E 1 c˜ung l`a co . so . ’ cu ’ a R 2 .Ma trˆa . n chuyˆe ’ nt`u . co . so . ’ E 1 , E 2 dˆe ´ nco . so . ’ E 2 ,E 1 c´o da . ng A ∗ =  21 1 −2  ,A ∗ −1 = − 1 5  −2 −1 −12  3 −4  = − 1 5  −2 −11  =    2 5 11 5    Do d ´o x 1 = 2 5 , x 2 = 11 5 trong co . so . ’ E 2 ,E 1 . V´ı d u . 8. Trong khˆong gian R 3 cho co . so . ’ E 1 , E 2 , E 3 n`ao d´o v`a trong co . so . ’ d´o c´ac vecto . E 1 ,E 2 ,E 3 v`a x c´o to . adˆo . l`a E 1 =(1, 1, 1); E 2 = (1, 2, 2), E 3 =(1, 1, 3) v`a x =(6, 9, 14). 196 Chu . o . ng 5. Khˆong gian Euclide R n 1 + Ch´u . ng minh r˘a ` ng E 1 ,E 2 ,E 3 c˜ung lˆa . p th`anh co . so . ’ trong R 3 . 2 + T`ım to . adˆo . cu ’ a x trong co . so . ’ E 1 ,E 2 ,E 3 . Gia ’ i. 1 + tu . o . ng tu . . nhu . trong v´ı du . 7, ha . ng cu ’ ahˆe . ba vecto . E 1 ,E 2 ,E 3 b˘a ` ng 3 nˆen hˆe . vecto . d ´odˆo . clˆa . p tuyˆe ´ n t´ınh trong khˆong gian 3-chiˆe ` u nˆen n´o lˆa . p th`anh co . so . ’ cu ’ a R 3 . 2+ Dˆe ’ t`ım to . adˆo . cu ’ a x trong co . so . ’ E 1 ,E 2 ,E 3 ta c´o thˆe ’ tiˆe ´ n h`anh theo hai phu . o . ng ph´ap sau. (I) V`ı E 1 ,E 2 ,E 3 lˆa . p th`anh co . so . ’ cu ’ a R 3 nˆen x = x 1 E 1 + x 2 E 2 + x 3 E 3 ⇒ (6, 9, 14) = x 1 (1, 1, 1) + x 2 (1, 2, 2) + x 3 (1, 1, 3) v`a do d´o x 1 ,x 2 ,x 3 l`a nghiˆe . mcu ’ ahˆe . x 1 + x 2 + x 3 =6, x 1 +2x + x 3 =9, x 1 +2x 2 +3x 3 =14.      ⇒ x 1 = 1 2 ,x 2 =3,x 3 = 5 2 · (I I) Lˆa . p ma trˆa . n chuyˆe ’ nt`u . co . so . ’ E 1 , E 2 , E 3 sang co . so . ’ E 1 ,E 2 ,E 3 : T EE =    111 121 123    ⇒ T −1 EE = 1 2    4 −1 −1 −22 0 0 −11    . Do d´o    x 1 x 2 x 3    = T −1 EE    6 9 14    = 1 2    1 6 5    =      1 2 3 5 2      v`a thu du . o . . ckˆe ´ t qua ’ nhu . tronng (I).  B ` AI T ˆ A . P 5.2. Co . so . ’ .D - ˆo ’ ico . so . ’ 197 1. Ch´u . ng minh r˘a ` ng c´ac hˆe . vecto . sau dˆay l`a nh˜u . ng co . so . ’ trong khˆong gian R 4 : 1) e 1 =(1, 0, 0, 0); e 2 =(0, 1, 0, 0); e 3 =(0, 0, 1, 0); e 4 =(0, 0, 0, 1). 2) E 1 =(1, 1, 1, 1); E 2 =(0, 1, 1, 1); E 3 =(0, 0, 1, 1); E 4 =(0, 0, 0, 1). 2. Ch´u . ng minh r˘a ` ng hˆe . vecto . do . nvi . : e 1 =(1, 0, ,0    n−1 ); e 2 =(0, 1, 0, ,0), ,e n =(0, 0, ,0    n−1 , 1) lˆa . p th`anh co . so . ’ trong R n .Co . so . ’ n`ay du . o . . cgo . il`aco . so . ’ ch´ınh t˘a ´ c. 3. Ch´u . ng minh r˘a ` ng hˆe . vecto . E 1 =(1, 0, ,0), E 2 =(1, 1, ,0), E n =(1, 1, ,1) l`a mˆo . tco . so . ’ trong R n . 4. Ch´u . ng minh r˘a ` ng hˆe . vecto . E 1 =(1, 2, 3, ,n− 1,n), E 2 =(1, 2, 3, ,n− 1, 0), E n =(1, 0, 0, ,0, 0) lˆa . p th`anh co . so . ’ trong khˆong gian R n . 5. H˜ay kiˆe ’ m tra xem mˆo ˜ ihˆe . vecto . sau dˆa y c ´o l ˆa . p th`anh co . so . ’ trong khˆong gian R 4 khˆong v`a t`ım c´ac to . adˆo . cu ’ a vecto . x =(1, 2, 3, 4) trong mˆo ˜ ico . so . ’ d´o. 1) a 1 =(0, 1, 0, 1); a 2 =(0, 1, 0, −1); a 3 =(1, 0, 1, 0); a 4 =(1, 0, −1, 0). (DS. 3, −1, 2, −1) 2) a 1 =(1, 2, 3, 0); a 2 =(1, 2, 0, 3); a 3 =(1, 0, 2, 3); 198 Chu . o . ng 5. Khˆong gian Euclide R n a 4 =(0, 1, 2, 3). (DS. 2 3 , − 1 6 , 1 2 , 1) 3) a 1 =(1, 1, 1, 1); a 2 =(1, −1, 1, −1); a 3 =(1, −1, 1, 1); a 4 =(1, −1, −1, −1). (DS. 3 2 , − 1 2 , 1, −1) 4) a 1 =(1, −2, 3, −4); a 2 =(−4, 1, −2, 3); a 3 =(3, −4, 1, −2); a 4 =(−2, 3, −4, 1). (DS. − 13 10 , − 7 10 , − 13 10 , − 17 10 ) Nhˆa . nx´et. Ta nh˘a ´ cla . ir˘a ` ng c´ac k´y hiˆe . u e 1 ,e 2 , ,e n du . o . . cd`ung dˆe ’ chı ’ c´ac vecto . do . nvi . cu ’ a tru . c x i (i =1, 2, ,n): e i =(1, 0, ,0    n−1 ),e 2 =(0, 1, 0, ,0), ,e n =(0, ,0    n−1 , 1) 6. T`ım ma trˆa . n chuyˆe ’ nt`u . co . so . ’ e 1 ,e 2 ,e 3 dˆe ´ nco . so . ’ e 2 ,e 3 ,e 1 . (D S.    001 100 010    ) 7. T`ım ma trˆa . n chuyˆe ’ nt`u . co . so . ’ e 1 ,e 2 ,e 3 ,e 4 dˆe ´ nco . so . ’ e 3 ,e 4 ,e 2 ,e 1 . (D S.      0001 0010 1000 0100      ) 8. Cho ma trˆa . n  −11 20  l`a ma trˆa . n chuyˆe ’ nt`u . co . so . ’ e 1 ,e 2 dˆe ´ nco . so . ’ E 1 , E 2 .T`ım to . adˆo . cu ’ a vecto . E 1 , E 2 . (DS. E 1 =(−1, 2); E 2 =(1, 0)) 9. Gia ’ su . ’    12−1 31 0 20 1    5.2. Co . so . ’ .D - ˆo ’ ico . so . ’ 199 l`a ma trˆa . n chuyˆe ’ nt`u . co . so . ’ e 1 ,e 2 ,e 3 dˆe ´ nco . so . ’ E 1 , E 2 , E 3 .T`ım to . adˆo . cu ’ a vecto . E 2 trong co . so . ’ e 1 ,e 2 ,e 3 .(DS. E 2 =(2, 1, 0)) 10. T`ım ma trˆa . n chuyˆe ’ nt`u . co . so . ’ e 1 ,e 2 ,e 3 dˆe ´ nco . so . ’ E 1 =2e 1 − e 3 + e 2 ; E 2 =3e 1 − e 2 + e 3 ; E 3 = e 3 . (D S.    230 1 −10 −111    ) 11. T`ım ma trˆa . n chuyˆe ’ nt`u . co . so . ’ e 1 ,e 2 ,e 3 dˆe ´ nco . so . ’ E 1 = e 2 + e 3 ; E 2 = −e 1 +2e 3 ; E 3 = e 1 + e 2 . (DS.    0 −11 101 120    ) 12. T`ım ma trˆa . n chuyˆe ’ nt`u . co . so . ’ e 1 ,e 2 ,e 3 ,e 4 dˆe ´ nco . so . ’ E 1 =2e 2 +3e 3 + e 4 ; E 2 = e 1 − 2e 2 +3e 3 − e 4 ; E 3 = e 1 + e 4 ; E 4 =2e 1 + e 2 −e 3 + e 4 . (DS.      0112 2 −20 1 330−1 1 −11 1      ) 13. Cho  21 −12  l`a ma trˆa . n chuyˆe ’ nt`u . co . so . ’ e 1 ,e 2 dˆe ´ nco . so . ’ E 1 , E 2 .T`ım to . adˆo . cu ’ a c´ac vecto . e 1 , e 2 trong co . so . ’ E 1 , E 2 . (DS. e 1 =  2 5 , 1 5  . e 2 =  − 1 5 , 2 5  ) Chı ’ dˆa ˜ n. T`u . ma trˆa . nd˜a cho t`ım khai triˆe ’ n E 1 , E 2 theo co . so . ’ e 1 ,e 2 . T`u . d´o t`ım khai triˆe ’ n e 1 ,e 2 theo co . so . ’ E 1 , E 2 . 200 Chu . o . ng 5. Khˆong gian Euclide R n 14. Cho ma trˆa . n    1 −13 51 2 14−1    l`a ma trˆa . n chuyˆe ’ nt`u . co . so . ’ e 1 ,e 2 ,e 3 dˆe ´ nco . so . ’ E 1 , E 2 , E 3 .T`ım to . adˆo . vecto . e 2 trong co . so . ’ E 1 , E 2 , E 3 . (DS. e 2 =  11 41 , − 4 41 , − 5 41  ) 15. Cho ma trˆa . n    101 002 −131    l`a ma trˆa . n chuyˆe ’ nt`u . co . so . ’ e 1 ,e 2 ,e 3 dˆe ´ nco . so . ’ E 1 , E 2 , E 3 .T`ım to . adˆo . c´ac vecto . e 1 ,e 2 ,e 3 trong co . so . ’ E 1 , E 2 , E 3 . (D S. e 1 =  1, 1 3 , 0  , e 2 =  − 1 2 , − 1 3 , 1 2  , e 3 =  0, 1 3 , 0  ) 16. Trong co . so . ’ e 1 ,e 2 vecto . x c´o to . ad ˆo . l`a (1; 2). T`ım to . adˆo . cu ’ a vecto . d ´o trong co . so . ’ E 1 = e 1 +2e 2 ; E 2 = −e 1 + e 2 . (D S. x =  − 1 3 , − 4 3  ) 17. Trong co . so . ’ e 1 ,e 2 vecto . x c´o to . ad ˆo . l`a ( −3; 1). T`ım to . adˆo . cu ’ a vecto . d´o trong co . so . ’ E 1 = −2e 1 + e 2 ; E 2 = e 2 . (D S. x =  3 2 , − 1 2  ) 18. Trong co . so . ’ e 1 ,e 2 ,e 3 vecto . x c´o to . ad ˆo . l`a (−1; 2; 0). T`ım to . adˆo . cu ’ a vecto . d´o trong co . so . ’ E 1 =2e 1 − e 2 +3e 3 , E 2 = −3e 1 + e 2 − 2e 3 ; E 3 =4e 2 +5e 3 .(DS. (−0, 68; −0, 12; 0, 36)) 19. Trong co . so . ’ e 1 ,e 2 ,e 3 vecto . x c´o to . ad ˆo . l`a (1, −1, 0). T`ım to . adˆo . cu ’ a vecto . d´o trong co . so . ’ : E 1 =3e 1 + e 2 +6e 3 , E 2 =5e 1 − 3e 2 +7e 3 , E 3 = −2e 1 +2e 2 − 3e 3 . 5.3. Khˆong gian vecto . Euclid. Co . so . ’ tru . . cchuˆa ’ n 201 (DS. x =(−0, 6; 1, 2; 1, 6)) 20. Trong co . so . ’ e 1 ,e 2 ,e 3 vecto . x c´o to . adˆo . l`a (4, 0, −12). T`ım to . a dˆo . cu ’ a vecto . d ´o trong co . so . ’ E 1 = e 1 +2e 2 + e 3 , E 2 =2e 1 +3e 2 +4e 3 , E 3 =3e 1 +4e 2 +3e 3 . (D S. x =(−4, −8, 8)) 21. Trong khˆong gian v´o . imˆo . tco . so . ’ l`a e 1 ,e 2 ,e 3 cho c´ac vecto . E 1 = e 1 + e 2 , E 2 =2e 1 − e 2 + e 3 , E 3 = e 2 − e 3 . 1) Ch´u . ng minh r˘a ` ng E 1 , E 2 , E 3 lˆa . p th`anh co . so . ’ . 2) T`ım to . ad ˆo . cu ’ a vecto . x = e 1 +8e 2 − 5e 3 trong co . so . ’ E 1 , E 2 , E 3 . (D S. x =(3, −1, 4)) 22. Trong co . so . ’ e 1 ,e 2 ,e 3 cho c´ac vecto . a =(1, 2, 3), b =(0, 3, 1), c =(0, 0, 2), d =(4, 3, 1). Ch´u . ng minh r˘a ` ng c´ac vecto . a, b, c lˆa . p th`anh co . so . ’ v`a t`ım to . adˆo . cu ’ a vecto . d trong co . so . ’ d´o. (D S. d  4, − 5 3 , − 14 3  ) 5.3 Khˆong gian vecto . Euclid. Co . so . ’ tru . . c chuˆa ’ n Khˆong gian tuyˆe ´ n t´ınh thu . . c V du . o . . cgo . i l`a khˆong gian Euclid nˆe ´ u trong V du . o . . c trang bi . mˆo . t t´ıch vˆo hu . ´o . ng, t ´u . cl`anˆe ´ uv´o . imˆo ˜ ic˘a . p phˆa ` ntu . ’ x, y ∈Vd ˆe ` utu . o . ng ´u . ng v´o . imˆo . tsˆo ´ thu . . c (k´y hiˆe . ul`a x, y) sao cho ∀x, y, z ∈Vv`a sˆo ´ α ∈ R ph´ep tu . o . ng ´u . ng d ´o tho ’ a m˜an c´ac tiˆen dˆe ` sau dˆa y (I) x, y = y,x; (I I)  x + y,z = x, z + y,z; (I II) αx, y = αx, y; (IV) x, x > 0nˆe ´ u x = θ. Trong khˆong gian vecto . R n dˆo ´ iv´o . ic˘a . p vecto . a =(a 1 ,a 2 , ,a n ), 202 Chu . o . ng 5. Khˆong gian Euclide R n b =(b 1 ,b 2 , ,b n ) th`ı quy t˘a ´ ctu . o . ng ´u . ng a, b = n  i=1 a i b i = a 1 b 1 + a 2 b 2 + ···+ a n b n (5.12) s˜e x´ac di . nh mˆo . t t´ıch vˆo hu . ´o . ng cu ’ a hai vecto . a v`a b. Nhu . vˆa . y khˆong gian R n v´o . it´ıchvˆohu . ´o . ng x´ac di . nh theo cˆong th ´u . c (5.12) tro . ’ th`anh khˆong gian Euclid. Do d ´o khi n´oi vˆe ` khˆong gian Euclid R n ta luˆon luˆon hiˆe ’ u l`a t´ıch vˆo hu . ´o . ng trong d´o x´ac di . nh theo (5.12). Gia ’ su . ’ x ∈ R n . Khi d´osˆo ´  x, x du . o . . cgo . il`adˆo . d`ai (hay chuˆa ’ n) cu ’ a vecto . x v`a d u . o . . ck´yhiˆe . ul`ax.Nhu . vˆa . y x def =  x, x (5.13) Vecto . x v´o . id ˆo . d`ai = 1 du . o . . cgo . il`ad u . o . . c chuˆa ’ n h´oa hay vecto . d o . n vi . .D ˆe ’ chuˆa ’ n h´oa mˆo . t vecto . kh´ac θ bˆa ´ tk`y ta chı ’ cˆa ` n nhˆan n´o v´o . isˆo ´ λ = 1 x . Dˆo . d`ai c´o c´ac t´ınh chˆa ´ t 1 + x =0⇔ x = θ. 2 + λx = |λ|x, ∀λ ∈ R. 3 + |x, y|  xy (bˆa ´ td˘a ’ ng th ´u . c Cauchy-Bunhiakovski) 4 + x + y  x + y (bˆa ´ td˘a ’ ng th´u . c tam gi´ac hay bˆa ´ td˘a ’ ng th ´u . c Minkovski). T`u . bˆa ´ td˘a ’ ng th´u . c3 + suy r˘a ` ng v´o . i hai vecto . kh´ac θ bˆa ´ tk`yx, y ∈ R n ta dˆe ` uc´o |x, y| xcos y  1 ⇔−1  x, y xy  1. Sˆo ´ x, y xy c´o thˆe ’ xem nhu . cosin cu ’ a g´oc ϕ n`ao d´o. G´oc ϕ m`a cos ϕ = x, y xy , 0  ϕ  π (5.14) 5.3. Khˆong gian vecto . Euclid. Co . so . ’ tru . . cchuˆa ’ n 203 du . o . . cgo . il`ag´oc gi˜u . a hai vecto . x v`a y. Hai vecto . x, y ∈ R n du . o . . cgo . il`avuˆong g´oc hay tru . . c giao nˆe ´ ut´ıch vˆo hu . ´o . ng cu ’ ach´ung b˘a ` ng 0: x, y =0. Hˆe . vecto . a 1 ,a 2 , ,a m ∈ R n du . o . . cgo . il`ahˆe . tru . . c giao nˆe ´ uch´ung tru . . c giao t`u . ng dˆoi mˆo . t, t´u . cl`anˆe ´ u a i ,a j  =0∀i = j. Hˆe . vecto . a 1 ,a 2 , ,a m ∈ R n du . o . . cgo . il`ahˆe . tru . . c giao v`a chuˆa ’ n h´oa (hay hˆe . tru . . c chuˆa ’ n)nˆe ´ u a i ,a i  = δ ij =    0nˆe ´ u i = j 1nˆe ´ u i = j D - i . nh l ´y 5.3.1. Mo . ihˆe . tru . . c giao c´ac vecto . kh´ac khˆong d ˆe ` ul`ahˆe . dˆo . c lˆa . p tuyˆe ´ n t´ınh. Hˆe . gˆo ` m n vecto . E 1 , E 2 , ,E n ∈ R n du . o . . cgo . il`aco . so . ’ tru . . c giao nˆe ´ u n´o l`a mˆo . tco . so . ’ gˆo ` m c´ac vecto . tru . . c giao t`u . ng dˆoi mˆo . t. Trong khˆong gian R n tˆo ` nta . inh˜u . ng co . so . ’ d˘a . cbiˆe . ttiˆe . nlo . . idu . o . . c go . i l`a nh˜u . ng co . so . ’ tru . . c chuˆa ’ n (vai tr`o nhu . co . so . ’ D ˆec´ac vuˆong g´oc trong h`ınh ho . c gia ’ i t´ıch). Hˆe . gˆo ` m n vecto . E 1 , E 2 , ,E n ∈ R n du . o . . cgo . i l`a mˆo . t co . so . ’ tru . . c chuˆa ’ n cu ’ a R n nˆe ´ u c´ac vecto . n`ay t`u . ng d ˆoi mˆo . t tru . . c giao v`a d ˆo . d`ai cu ’ a mˆo ˜ i vecto . cu ’ ahˆe . dˆe ` ub˘a ` ng 1, t´u . cl`a (E i , E k )=    0nˆe ´ u i = k, 1nˆe ´ u i = k. D - i . nh l´y 5.3.2. Trong mo . i khˆong gian Euclid n-chiˆe ` udˆe ` utˆo ` nta . ico . so . ’ tru . . c chuˆa ’ n. Dˆe ’ c´o diˆe ` ud´o ta c´o thˆe ’ su . ’ du . ng ph´ep tru . . c giao h´oa Gram-Smidth du . amˆo . tco . so . ’ vˆe ` co . so . ’ tru . . cchuˆa ’ n. Nˆo . i dung cu ’ a thuˆa . t to´an d´o n h u . sau Gia ’ su . ’ E 1 = a 1 .Tiˆe ´ pd´o ph´ep du . . ng du . o . . ctiˆe ´ n h`anh theo quy na . p. 204 Chu . o . ng 5. Khˆong gian Euclide R n Nˆe ´ u E 1 , E 2 , ,E i d˜a d u . o . . cdu . . ng th`ı E i+1 c´o thˆe ’ lˆa ´ y E i+1 = a i+1 + i  j=1 α j a j , trong d´o α j = − a i+1 , E j  E j , E j  ,j= 1,i du . o . . ct`ımt`u . d iˆe ` ukiˆe . n E i+1 tru . . c giao v´o . imo . i vecto . E 1 , E 2 , ,E i . C ´ AC V ´ IDU . 1. Trong c´ac ph´ep to´an du . ´o . idˆay ph´ep to´an n`ao l`a t´ıch vˆo hu . ´o . ng cu ’ a hai vecto . x =(x 1 ,x 2 ,x 3 ), y =(y 1 ,y 2 ,y 3 ) ∈ R 3 : 1) x, y = x 2 1 y 2 1 + x 2 2 y 2 2 + x 2 3 y 2 3 ; 2) x, y = x 1 y 1 +2x 2 y 2 +3x 3 y 3 ; 3) x, y = x 1 y 1 + x 2 y 2 −x 3 y 3 . Gia ’ i. 1) Ph´ep to´an n`ay khˆong l`a t´ıch vˆo hu . ´o . ng v`ı n´o khˆong tho ’ a m˜an tiˆen d ˆe ` III cu ’ a t´ıch vˆo hu . ´o . ng: αx, y = α 2 x 2 1 y 2 1 + α 2 x 2 2 y 2 2 + α 2 x 2 3 y 2 3 = α(x 2 1 y 2 1 + x 2 2 y 2 2 + x 2 3 y 2 3 ) 2) Ph´ep to´an n`ay l`a t´ıch vˆo hu . ´o . ng. Thˆa . tvˆa . y, hiˆe ’ n nhiˆen c´ac tiˆen d ˆe ` I v`a I I tho ’ a m˜an. Ta kiˆe ’ m tra c´ac tiˆen dˆe ` III v`a IV. Gia ’ su . ’ x  =(x  1 ,x  2 ,x  3 ), x  =(x  1 ,x  2 ,x  3 ) ∈ R 3 . Khi d´o x  + x  ,y =(x  1 + x  1 )y 1 +2(x  2 + x  2 )y 2 +3(x  3 + x  3 )y 3 =(x  1 y 1 +2x  2 y 2 +3x  3 y 3 )+(x  1 y 1 +2x  2 y 2 +3x  3 y 3 ) = x  ,y+ x  ,y. Tiˆe ´ p theo ta x´et x, x = x 2 1 +2x 2 2 +3x 2 3  0v`a x, x =0⇔ x 2 1 +2x 2 2 +3x 2 3 =0⇔ x 1 = x 2 = x 3 =0⇔ x = θ. [...]... a 1) a1 = (1, 1, 1, 1) , a2 = (1, 1, 1, 1) 1 1 1 1 1 1 1 1 (DS E1 = , − , , − , E2 = , , , , E3 = − 2 2 2 2 2 2 2 2 1 1 √ , 0, √ , 0 , 2 2 ’ ´ o ´ 5.4 Ph´p biˆn d ˆi tuyˆn t´ e e e ınh 213 1 1 E4 = 0, − √ , 0, √ ) 2 2 2) a1 = (1, 1, 1, 3), a2 = (1, 1, −3, 1) √ 1 3 1 1 √ ,− √ ,− √ , , 2 3 2 3 2 3 2 = √ 1 1 1 3 √ , √ ,− ,− √ , 2 2 3 2 3 2 3 2 1 1 E3 = √ , √ , √ , 0 , E4 = 6 6 6 (DS 5.4 5.4 .1 E1 E2... gian R4 : a ’ o a o a e 1) a1 = (1, 1, 1, 1) , a2 = (1, 1, −3, −3), a3 = (4, 3, 0, 1) 1 1 1 1 1 1 1 1 (DS E1 = , , , , E2 = , , − , − , E3 = 2 2 2 2 2 2 2 2 1 1 1 1 ,− , ,− ) 2 2 2 2 2) a1 = (1, 2, 2, 0), a2 = (1, 1, 3, 5), a3 = (1, 0, 1, 0) 1 5 1 1 2 2 (DS E1 = , , , 0 , E2 = 0, − √ , √ , √ , 3 3 3 3 3 3 3 3 3 17 8 5 6 E3 = √ , − √ , √ , − √ ) 78 3 78 3 78 3 78 ’ ` ’ a 10 Ch´.ng to r˘ng c´c hˆ vecto... Chu.o.ng 5 Khˆng gian Euclide o Rn 2 1 2 (DS E1 = a1 = (1, −2, 2); E2 = − , − , − ; E3 = (6, −3, −6)) 3 3 3 2) a1 = (1, 1, 1, 1) , a2 = (3, 3, 1, 1) , a3 = (−2, 0, 6, 8) (DS E1 = a1 = (1, 1, 1, 1) ; E2 = (2, 2, −2, −2), E3 = ( 1, 1, 1, 1) ) 3) a1 = (1, 1, 1, 1) ; a2 = (3, 3, 1, 1) ; a3 = ( 1, 0, 3, 4) − (DS E1 = a1 = (1, 1, 1, 1) , E2 = (2, 2, −2, −2), E3 = 7 7 1 1 , ,− , ) 2 2 2 2 ’ 9 Tru.c chuˆn h´a... − βy1 = αx1 , α(x2 − x1), α(x3 − x1) + βy1, β(y2 − y1), β(y3 − y2) = α(x1, x2 − x1 , x3 − x1 ) + β(y1, y2 − y1, y3 − y1 ) = αL(x) + βL(y) ´ ’ ´ Vˆy L l` ph´p biˆn dˆi phˆn tuyˆn t´ a a e e o a e ınh ’ ´ ’ e ı a ’ o o o 2+ Dˆ t`m ma trˆn cua L dˆi v´.i co so E1 , E2 , E3 ta c´ L(E1 ) = L (1, 1, 1) = (1, 1 − 1, 1 − 1) = (1, 0, 0) = E1 + 0 · E2 + 0 · E3 , L(E2 ) = L(0, 1, 1) = (0, 1, 1) = 0 · E1 + 1 ·... E1 = E1 = (1, 2, 1) Tiˆp theo d˘t ´ ´ ’ Giai 1) Tru o e e a c l` u E2 = E2 + λE1 sao cho E2 , E1 = 0, t´ a E2 , E1 = E1 , E2 + λ E1 , E1 = 0 ’ ’ 5.3 Khˆng gian vecto Euclid Co so tru.c chuˆn o a 207 ’ Nhu.ng E1 , E1 = 0 (cu thˆ l` > 0) v` E1 = E1 = θ Do d´ ı o e a λ=− (1, 2, 1) , (1, 1, 0) E1 , E2 1 =− =− · 2 + 22 + 12 E1 , E1 1 2 Do d´ o 1 1 1 , 0, − E2 = (1, 1, 0) − (1, 2, 1) = 2 2 2 ´ Tiˆp... + x2  = 1 1 0 x2  y3 x1 + x2 + x3 x3 1 1 1 v` do d´ a o   1 0 0   A = 1 1 0 1 1 1 ’ ´ o ´ 5.4 Ph´p biˆn d ˆi tuyˆn t´ e e e ınh ’ ’ ’ Gia su B l` ma trˆn cua L theo co so E1 , E2, E3 Khi d´ o a a ’     1 −2 1 1 0 0 2 1 0     1 B = TeE ATeE =  1 4 2  1 1 0  1 0 1 1 1 1 1 1 1 3 1 2   −4 −3 1   =  10 7 −2 3 2 0 ´ ’ ’ ’ a a e e o V´ du 4 Gia su L : R3 → R3 v` L∗... trˆn R2 : a a 1) a, b = a1b1 + a2b2 2) a, b = ka1b1 + a2b2 , k, = 0 3) a, b = a1b1 + a1b2 + a2 b1 4) a, b = 2a1b1 + a1b2 + a2b1 + a2b2 5) a, b = 3a1b1 + a1b2 + a2b1 − a2 b2 a a ıch o o (DS 1) , 2) v` 4) x´c dinh t´ vˆ hu.´.ng ıch o o 3) v` 5) khˆng x´c dinh t´ vˆ hu.´.ng) a o a 2 Trong khˆng gian Euclide R4, x´c dinh g´c gi˜.a c´c vecto.: o a o u a 5 1) a = (1, 1, 1, 1) , b = (3, 5, 1, 1) (DS arccos... ’ Giai 1 Ma trˆn chuyˆn t` a e u e l`: a    1 −2 1 2 1 0    1  =  1 0 1 ⇒ TeE  1 4 2  1 1 1 3 1 2  TeE ´ ’ ’ 1 2 3 a o ’ ’ Gia su (x∗ , x∗, x∗) l` toa dˆ cua x dˆi v´.i co so {E1 , E2 , E3 } Khi o o o d´          x∗ x1 1 −2 1 3 5 1  ∗      1   2   1 = −7 x2 = TeE x2  =  1 4 x∗ x3 1 1 1 0 −4 3 ´ ’ o o a a o Vˆy toa dˆ cua x dˆi v´.i co so E1 , E2... L(e1 ) v` L(e2 ) theo co so ch´ t˘c Ta c´ L(e1 ) = L (1, 0) = (1, 2 · 1) = L (1, 2) = 1 · e1 + 2 · e2, L(e2 ) = L(0, 1) = (1, 2 · 0) = L (1, 0) = 1 · e1 + 0 · e2 T` d´ thu du.o.c u o A= 1 1 2 0 ’ V´ du 2 X´t khˆng gian R3 v´.i co so E: E1 = (1, 1, 1) , E2 = (0, 1, 1) , ı e o o ’ ´ ’ ’ a a e e o a u E3 = (0, 0, 1) v` ph´p biˆn dˆi L : R3 → R3 x´c dinh bo.i d˘ng th´.c L[(u1 , u2, u3)] = (u1, u2 − u1 ,... e a o th`nh co so tru.c giao: ’ ’ sung cho c´c hˆ d´ dˆ tro a a e o e ’ 1) a1 = (1, −2, 1, 3), a2 = (2, 1, −3, 1) ’ a a (DS Ch˘ng han, c´c vecto a3 = (1, 1, 1, 0), a4 = ( 1, 1, 0, 1) ) 2) a1 = (1, 1, 1, −3), a2 = (−4, 1, 5, 0) ’ (DS Ch˘ng han, c´c vecto a3 = (2, 3, 1, 0) v` a4 = (1, 1, 1, 1) ) a a a ’ ` ’ a a a o a a 11 Ch´.ng to r˘ng c´c vecto sau dˆy trong R4 l` tru.c giao v` bˆ sung u ’ ’ . E 1 = a 1 = (1, 1, 1, 1) ; E 2 =(2, 2, −2, −2), E 3 =( 1, 1, 1, 1) ) 3) a 1 = (1, 1, 1, 1) ; a 2 =(3, 3, 1, 1) ; a 3 =( 1, 0, 3, 4). (DS. E 1 = a 1 = (1, 1, 1, 1) , E 2 =(2, 2, −2, −2), E 3 =  − 1 2 , 1 2 ,. 3); 19 8 Chu . o . ng 5. Khˆong gian Euclide R n a 4 =(0, 1, 2, 3). (DS. 2 3 , − 1 6 , 1 2 , 1) 3) a 1 = (1, 1, 1, 1) ; a 2 = (1, 1, 1, 1) ; a 3 = (1, 1, 1, 1) ; a 4 = (1, 1, 1, 1) . (DS. 3 2 , − 1 2 ,. h´oa c´ac co . so . ’ d ´o 1) a 1 = (1, 1, 1, 1) , a 2 = (1, 1, 1, 1) . (D S. E 1 =  1 2 , − 1 2 , 1 2 , − 1 2  , E 2 =  1 2 , 1 2 , 1 2 , 1 2  , E 3 =  − 1 √ 2 , 0, 1 √ 2 , 0  , 5.4. Ph´ep

Ngày đăng: 29/07/2014, 07:20

TỪ KHÓA LIÊN QUAN