1. Trang chủ
  2. » Luận Văn - Báo Cáo

GIẢI THUẬT TÌM KIẾM MINIMAX VÀ ỨNG DỤNG TRONG CÁC TRÒ CHƠI CÓ TỔNG BẰNG KHÔNG

72 2,3K 4
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 72
Dung lượng 1,31 MB

Nội dung

GIẢI THUẬT TÌM KIẾM MINIMAX VÀ ỨNG DỤNG TRONG CÁC TRÒ CHƠI CÓ TỔNG BẰNG KHÔNG

Website: http://www.docs.vn Email : lienhe@docs.vn Tel (: 0918.775.368 ĐẠI HỌC QUỐC GIA HÀ NỘI TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN ---------------- NGUYỄN THỊ LỆ GIẢI THUẬT TÌM KIẾM MINIMAX ỨNG DỤNG TRONG CÁC TRÒ CHƠI TỔNG BẰNG KHÔNG Chuyên ngành: Bảo đảm toán học cho máy tính hệ thống tính toán Mã số: 60.46.35 LUẬN VĂN THẠC SĨ KHOA HỌC NGƯỜI HƯỚNG DẪN KHOA HỌC: TS. NGUYỄN THỊ HỒNG MINH Hà Nội - 2009 Mục lục LỜI NÓI ĐẦU .4 CHƯƠNG 1: TỔNG QUAN VỀ CÁC VẤN ĐỀ TÌM KIẾM 6 1.1 Bài toán tìm kiếm không gian trạng thái 6 1.1.1 Bài toán tìm kiếm 6 1.1.2 Không gian tìm kiếm .8 1.2 Các kỹ thuật tìm kiếm bản .11 1.2.1 Tìm kiếm không thông tin 12 1.2.2 Tìm kiếm thông tin .15 1.2.3 Tìm kiếm đối kháng 16 CHƯƠNG 2: GIẢI THUẬT TÌM KIẾM MINIMAX .20 2.1 Giới thiệu 20 2.1.1 Trò chơi tổng bằng không (Zero-sum-game) .21 2.1.2Định lý Minimax 26 2.2 Giải thuật Minimax .27 2.2.1 Ý tưởng 27 2.2.2 Áp dụng giải thuật Minimax đến độ sâu lớp cố định .31 2.2.3 Thủ tục Minimax .33 2.2.4 Đánh giá .38 2.3 Giải thuật cải tiến Alpha-beta .38 2.3.1 Ý tưởng 40 2.3.2 Giải thuật .41 2.3.3 Đánh giá .44 2.4 So sánh giải thuật Minimax giải thuật Alpha-beta .47 CHƯƠNG 3: ỨNG DỤNG 50 3.1 Phân tích bài toán 50 3.1.1 Trò chơi .50 3.1.2 sở lý thuyết .52 3.2 Cài đặt chương trình .52 3.2.1 Cấu trúc chương trình mối quan hệ giữa các lớp chính .52 3.2.2 Lớp Form1 .54 2 3.2.3 Lớp CBoard .54 3.2.4 Lớp gameAI .55 3.3 Một số giao diện kết quả chạy chương trình 66 KẾT LUẬN .70 Tài liệu tham khảo 71 3 LỜI NÓI ĐẦU Lý thuyết trò chơi (game theory) thường được coi là một nhánh của toán học ứng dụng kinh tế học ứng dụng nhằm nghiên cứu về các tình huống trong đó các bên tham gia trò chơi áp dụng những chiến lược ra quyết định nhằm tối ưu hóa kết quả mình nhận được. Ban đầu Lý thuyết trò chơi được phát triển như một công cụ để nghiên cứu hành vi kinh tế học, ngày nay Lý thuyết này được sử dụng trong nhiều ngành khoa học như Sinh học, Triết học, Chính trị học… Đặc biệt Lý thuyết trò chơi đã thu hút được sự chú ý của các nhà Khoa học máy tính do ứng dụng của nó trong Trí tuệ nhân tạo Điều khiển học. Trí tuệ nhân tạo đã vận dụng Lý thuyết trò chơi để nghiên cứu về các trò chơi đối kháng thiết kế chương trình chơi cờ giữa Người Máy tính. Do bùng nổ tổ hợp quá lớn của cây trò chơi mà cả người máy không thể (và không bao giờ) thể tìm kiếm vét cạn (hết mọi khả năng). Do đó phương pháp tìm kiếm duy nhất là chỉ tìm kiếm đến một độ sâu giới hạn nào đó chọn nước đi dẫn đến một thế cờ lợi nhất cho mình. Do phải tính cả khả năng chống trả của đối phương nên ta không dùng được các thuật toán tìm kiếm thông thường mà phải dùng một thuật toán tìm kiếm riêng cho cây trò chơi, đó là thuật toán theo chiến lược Minimax. Đây cũng là chiến lược hiệu quả áp dụng trong các trò chơi tổng bằng không. Chúng ta đều biết, nhiều tình huống trong thực tế đặc biệt là trong lĩnh vực Kinh tế, Chính trị thể nhìn nhận như một trò chơi tổng bằng không. Do đó việc nghiên cứu chiến lược tìm kiếm nước đi cho dạng trò chơi này thể mang lại những ý nghĩa thực tiễn nhất định. Nội dung của luận văn tìm hiểu nghiên cứu về thuật toán tìm kiếm đối kháng Minimax, các cải tiến của nó ứng dụng trong trò chơi tổng bằng không. Nội dung bản luận văn được chia làm 3 chương:  Chương 1 trình bày một cách tổng quan về các vấn đề tìm kiếm : bài toán tìm kiếm, biểu diễn vấn đề bằng không gian trạng thái các kỹ thuật tìm kiếm bản. 4  Chương 2 trình bày giải thuật tìm kiếm Minimax giải thuật cải tiến Alpha- beta áp dụng cho các trò chơi với tổng bằng không. Mỗi giải thuật được trình bày gồm các nội dung: ý tưởng, thủ tục thực hiện giải thuật đánh giá.  Chương 3 trình bày một ứng dụng của thuật toán tìm kiếm Minimax áp dụng cho trò chơi xếp các quân hậu lên bàn cờ chướng ngại vật. Trong thời gian học tập nghiên cứu để hoàn thành luận văn này, tác giả đã nhận được sự quan tâm, hướng dẫn, đóng góp của các thầy cô, các bạn bè người thân. Trước hết, tác giả xin được dành lời cảm ơn chân thành lòng biết ơn sâu sắc nhất tới giáo viên hướng dẫn của mình là Tiến sĩ Nguyễn Thị Hồng Minh, người đã định hướng, gợi mở những ý tưởng sâu sắc hiệu quả, đã tận tình chỉ bảo giúp đỡ tác giả về mọi mặt để thể hoàn thành nhiệm vụ nghiên cứu. Luận văn được thực hiện bằng những kiến thức mà tác giả được trang bị trong suốt 2 năm học tại Khoa Toán - - Tin, Trường Đại Học Khoa học tự nhiên với sự giảng dạy nhiệt tình của các giảng viên sự hăng say học tập của các học viên. Lời cảm ơn chân thành xin được gửi tới các thầy, trong khoa Toán-Cơ-Tin học, đặc biệt các thầy trong bộ môn Tin học, các anh, chị bạn bè trong cùng lớp cao học chuyên ngành Bảo đảm toán học cho máy tính hệ thống tính toán khóa 2007-2009. Lời cảm ơn cuối cùng xin được dành cho gia đình những bạn bè thân thiết, những người đã dành sự quan tâm động viên hết mực để tác giả hoàn thành tốt bản luận văn này. Hà nội, tháng 10 năm 2009 5 CHƯƠNG 1: TỔNG QUAN VỀ CÁC VẤN ĐỀ TÌM KIẾM 1.1 Bài toán tìm kiếm không gian trạng thái 1.1.1 Bài toán tìm kiếm Tìm kiếm luôn là thao tác nền móng cho rất nhiều tác vụ tính toán. Các bài toán tìm kiếm bao gồm việc tìm cách tốt nhất để thu được thông tin cần cho một quyết định. Mỗi bài toán bất kỳ đều chứa trong đó một bài toán con tìm kiếm theo một chiều hướng nào đó, các tình huống tồn tại ở đó việc tìm kiếm cần phải xử lý là: kiểm tra các tài khoản, thanh tra điều khiển chất lượng… Một cách tổng quát, tìm kiếm thể hiểu là tìm một hoặc một số đối tượng thỏa mãn những đòi hỏi nào đó trong tập hợp rộng lớn các đối tượng. Chúng ta thể kể ra rất nhiều vấn đề mà việc giải quyết nó được quy về vấn đề tìm kiếm. Trong các trò chơi, chẳng hạn cờ vua, cờ caro vấn đề tìm kiếm được thể hiện ở chỗ trong số rất nhiều nước đi được phép thực hiện, ta phải tìm ra các nước đi dẫn tới tình thế ưu thế thắng. Chứng minh định lý cũng thể xem như vấn đề tìm kiếm. nhiều phát biểu bài toán tìm kiếm khác nhau. Trong phần này chúng ta xem xét một số phát biểu của bài toán tìm kiếm như sau: Trong lý thuyết tính toán, một bài toán tìm kiếm là một loại bài toán tính toán được biểu diễn bởi một quan hệ nhị phân. Nếu R là một quan hệ nhị phân sao cho field(R) ⊆ Γ + T là một máy Turing, thì T tính f nếu: - Nếu mỗi x một số giá trị y mà R(x,y) thì T truy nhập vào với đầu ra z mà R(x,z) ( thể nhiều y, T chỉ cần một trong số chúng) - Nếu với giá trị x mà không giá trị y thỏa mãn R(x,y) thì T loại bỏ x. Chú ý rằng đồ thị của hàm bộ phận là một quan hệ nhị phân, nếu T tính một hàm bộ phận thì hầu hết mọi giá trị thể cho đầu ra. 6 Một quan hệ R thể được biểu diễn như một bài toán tìm kiếm, một máy Turing tính R còn được gọi để giải quyết nó. Mọi bài toán tìm kiếm đều tương ứng với bài toán quyết định, cụ thể là: L(R) = { x | ∃ yR(x,y)}. Tìm kiếm nghĩa là tìm một hay nhiều mẩu thông tin đã được lưu trữ. Thông thường, thông tin được chia thành các mẩu tin (record), mỗi mẩu tin đều một KHÓA (key) dùng cho việc tìm kiếm. Ta sẽ luôn một khoá cho trước giống như khoá của các mẩu tin mà ta cần tìm. Mỗi mẩu tin được tìm thấy sẽ chứa toàn bộ thông tin để cung cấp cho một quá trình xử lý nào đó. Việc tìm kiếm được áp dụng rất đa dạng rộng rãi. Ví dụ: Một Ngân hàng nắm giữ tất cả thông tin của rất nhiều tài khoản khách hàng cần tìm kiếm để kiểm tra các biến động. Một hãng Bảo hiểm hay một hệ thống trợ giúp bán vé xe, vé máy bay….Việc tìm kiếm thông tin để đáp ứng việc sắp đặt ghế các yêu cầu tương tự như vậy là thực sự cần thiết. Một phát biểu Bài toán tìm kiếm thường được sử dụng nhất là: “Cho một bảng gồm n bản ghi R 1 , R 2 , …., R n . Mỗi bản ghi R i (1 ≤ i ≤ n) tương ứng với 1 khóa k i . Hãy tìm bản ghi giá trị khóa tương ứng bằng X cho trước. X được gọi là khóa tìm kiếm hay đối trị tìm kiếm. Công việc tìm kiếm sẽ hoàn thành khi một trong hai tình huống sau đây xảy ra. 1. Tìm được bản ghi giá trị khóa tương ứng bằng X, lúc đó ta nói: phép tìm kiếm được thỏa (Successful). 2. Không tìm được bản ghi nào khóa bằng X cả: phép tìm kiếm không thỏa. (unsuccessful). Thuật ngữ thường được dùng trong việc mô tả cấu trúc dữ liệu của việc tìm kiếm là TỪ ĐIỂN BẢNG KÝ HIỆU. Một ví dụ điển hình như ta muốn xây dựng hệ thống tra từ điển Tiếng Anh chẳng hạn. Ở đây, “khoá” là từ “mẩu tin” là diễn giải cho từ đó, mỗi mẩu tin chứa định nghĩa, cách phát âm các thông tin khác. BẢNG KÝ 7 HIỆU chính là từ điển cho chương trình các mẩu tin chứa thông tin mô tả đối tượng được đặt tên. Một cách tổng quát, bài toán tìm kiếm thể được phát biểu dựa vào không gian trạng thái với bộ 4 (S, T o , Op, T G ) hoặc bộ 5: (S, T 0 , Op, T G ,, Pcost). Trong đó: S là tập các trạng thái, T 0 là trạng thái ban đầu, Op là tập các toán tử hay tập các phép chuyển trạng thái mà thể chuyển một trạng thái này sang trạng thái khác, T G là trạng thái đích. Pcost là chi phí đường đi. Mục đích của bài toán là tìm ra cách chuyển từ trạng thái ban đầu sang trạng thái đích, nếu theo bộ 5 thêm Pcost thì bài toán cần tìm nghiệm tốt nhất nghĩa là tìm cách chuyển từ trạng thái ban đầu đến trạng thái đích với chi phí nhỏ nhất (hoặc lớn nhất). Phát biểu chi tiết hơn của cách biểu diễn này chúng ta sẽ xét trong mục không gian tìm kiếm dưới đây. 1.1.2 Không gian tìm kiếm 1.1.2.1 Không gian tìm kiếm Khi muốn giải quyết một vấn đề nào đó bằng tìm kiếm, trước hết ta phải xác định không gian tìm kiếm. Không gian tìm kiếm bao gồm tất cả các đối tượng mà ta cần quan tâm để tìm ra trong đó đối tượng yêu cầu. Đó thể là không gian liên tục, chẳng hạn không gian các véctơ thực n chiều; hoặc cũng thể là không gian các đối tượng rời rạc như tập các nút của đồ thị hay tập các lời giải của bài toán [7]. Một cách chung nhất, nhiều bài toán phức tạp đều dạng "tìm đường đi trong đồ thị" hay nói một cách hình thức hơn là "xuất phát từ một đỉnh của một đồ thị, tìm đường đi hiệu quả nhất đến một đỉnh nào đó". Một phát biểu khác thường gặp của dạng bài toán này là : Cho trước hai trạng thái T 0 T G hãy xây dựng chuỗi trạng thái T 0 , T 1 , T 2 , ., T n-1 , T n = T G sao cho : ∑ − n i1i TPcost(T 1 ), thỏa mãn một điều kiện cho trước (thường là nhỏ nhất). 8 Trong đó, T i thuộc tập hợp S (gọi là không gian trạng thái – state space) bao gồm tất cả các trạng thái thể của bài toán Pcost(T i-1 ,T i ) là chi phí để biến đổi từ trạng thái T i-1 sang trạng thái T i . Tuy nhiên, từ một trạng thái T i-1 ta nhiều cách để biến đổi sang trạng thái T i . Khi nói đến một biến đổi cụ thể từ T i-1 sang T i ta sẽ dùng thuật ngữ hướng đi (với ngụ ý nói về sự lựa chọn). Hình 1.1: Mô hình chung của các vấn đề-bài toán phải giải quyết bằng phương pháp tìm kiếm lời giải. Không gian tìm kiếm là một tập hợp trạng thái - tập các nút của đồ thị. Chi phí cần thiết để chuyển từ trạng thái này sang trạng thái khác được biểu diễn dưới dạng các con số nằm trên cung nối giữa hai nút tượng trưng cho hai trạng thái. 1.1.2.2 Biểu diễn vấn đề trong không gian trạng thái Ta sẽ xét việc biểu diễn một vấn đề trong không gian trạng thái sao cho việc giải quyết vấn đề được quy về việc tìm kiếm trong không gian trạng thái. Một phạm vi rộng lớn các vấn đề, đặc biệt các câu đố, các trò chơi, thể mô tả bằng cách sử dụng khái niệm trạng thái phép chuyển trạng thái hay là phép chuyển (phép biến đổi trạng thái). Ví dụ: Trong trò chơi cờ vua, mỗi cách bố trí các quân trên bàn cờ là một trạng thái. Trạng thái ban đầu là sự sắp xếp các quân lúc đầu cuộc chơi. Mỗi nước đi hợp lệ là một phép chuyển trạng thái, nó biến đổi một trạng thái trên bàn cờ thành một trạng thái khác. T 0 T G 9 Như vậy muốn biểu diễn một vấn đề trong không gian trạng thái, ta cần xác định các yếu tố sau: - Trạng thái ban đầu - Tập hợp các phép chuyển trạng thái. Trong đó mỗi toán tử hay phép chuyển mô tả một hành động hoặc một phép biến đổi thể đưa một trạng thái tới một trạng thái khác. Tập hợp tất cả các trạng thái thể đạt tới từ trạng thái ban đầu bằng cách áp dụng một dãy phép chuyển trạng thái, lập thành không gian trạng thái của bài toán. Ta sẽ ký hiệu không gian trạng thái là S, trạng thái ban đầu là T 0 (T 0 ∈ S). Mỗi phép chuyển R thể xem như một ánh xạ R: S → S. Nói chung R là một ánh xạ không xác định khắp nơi trên S. - Một tập hợp T G các trạng thái kết thúc (trạng thái đích). T G là tập con của không gian S. Trong nhiều vấn đề (chẳng hạn các loại cờ) thể nhiều trạng thái đích ta không thể xác định trước được các trạng thái đích. Nói chung trong phần lớn các vấn đề hay, ta chỉ thể mô tả các trạng thái thỏa mãn một số điều kiện nào đó. Khi biểu diễn một vấn đề thông qua các trạng thái các phép chuyển, thì việc tìm nghiệm của bài toán được quy về việc tìm đường đi từ trạng thái ban đầu tới trạng thái đích. (Một đường đi trong không gian trạng thái là một dãy phép chuyển dẫn một trạng thái tới một trạng thái khác). Chúng ta thể biểu diễn không gian trạng thái bằng đồ thị định hướng, trong đó mỗi đỉnh đồ thị tương ứng với một trạng thái. Nếu phép chuyển R biến đổi trạng thái u thành trạng thái v, thì cung gán nhãn R đi từ đỉnh u tới đỉnh v. Khi đó một đường đi trong không gian trạng thái sẽ là một đường đi trong đồ thị. Sau đây chúng ta sẽ xem xét một ví dụ về không gian trạng thái được xây dựng cho bài toán 8 số. Ví dụ : Bài toán 8 số. Cho bảng 3x3 ô tám quân mang số hiệu từ 1 đến 8, còn lại một ô trống. Mỗi quân ở cạnh ô trống thể được chuyển dịch tới ô trống đó. Yêu cầu của bài toán là tìm ra một dãy các chuyển dịch để biến đổi trạng thái ban đầu của 10 [...]... mà ta thể lựa chọn áp dụng kỹ thuật phù hợp hiệu quả Chúng ta sẽ tìm hiểu về một số kỹ thuật tìm kiếm bản trong các mục tiếp theo, bao gồm: Tìm kiếm không thông tin, tìm kiếm thông tin tìm kiếm đối kháng Trong đó, tập trung vào kỹ thuật tìm kiếm đối kháng để làm sở cho phát triển chương 2 của luận văn này 11 1.2.1 Tìm kiếm không thông tin Một giải thuật tìm kiếm không thông... người khác không thích nghe Việc ai đó không thích nghe chẳng ảnh hưởng gì tới sở thích của bạn trong điều kiện bạn không phải nghe lời bình luận của người đó Trong luận văn này trò chơi tổng bằng không, cụ thể là trò chơi tổng bằng không với hai người chơi sẽ được quan tâm nghiên cứu kỹ hơn 2.1.1 Trò chơi tổng bằng không (Zero-sum-game) Trò chơi tổng bằng khôngtrò chơi tổng giá... dần vào cây T các đỉnh kề “tốt nhất” trong số các đỉnh còn lại Thời gian thực hiện giải thuật Prim là O(n2) 14 1.2.2 Tìm kiếm thông tin Các kỹ thuật tìm kiếm không thông tin trong một số trường hợp rất kém hiệu quả thậm chí không áp dụng được Để tăng tốc độ của các quá trình tìm kiếm ta thể dùng các giải thuật tìm kiếm có thông tin Trong mục này chúng ta sẽ hệ thống một số chiến lược tìm kiếm. .. đáng kể cho các ví dụ nhỏ Sau đây ta sẽ giới thiệu một số dạng tìm kiếm không thông tin tiêu biểu ứng với các cách tổ chức dữ liệu 1.2.1.1 Tìm kiếm trên danh sách Các giải thuật tìm kiếm trên danh sách là loại giải thuật tìm kiếm bản nhất Mục đích là tìm trong một tập hợp một phần tử chứa một khóa nào đó Các giải thuật tìm kiếm tiêu biểu nhất trên danh sách là: Tìm kiếm tuần tự (hay tìm kiếm tuyến... nhất, tìm bao đóng bắc cầu,…Tuy nhiên ứng với mỗi dạng bài toán một số giải thuật tìm kiếm thích hợp để giải quyết Chẳng hạn thuật toán Dijkstra, thuật toán Kruskal, giải thuật láng giềng gần nhất giải thuật Prim [3] Các thuật toán này thể được coi là các mở rộng của các thuật toán tìm kiếm trên cây: tìm kiếm theo chiều sâu, tìm kiếm theo chiều rộng Thuật toán Dijkstra là một thuật toán giải. .. vấn đề tìm kiếm trong không gian trạng thái Sau đây chúng ta sẽ xem thế nào trò chơi đối kháng chiến lược tìm kiếm nào sẽ được áp dụng 1.2.3.1 Trò chơi đối kháng Trong các trò chơi đấu trí như các trò chơi cờ Vua, cờ Tướng, cờ vây, cờ caro (go-moku), một cây trò chơi bao gồm tất cả các nước đi thể của cả hai đấu thủ các cấu hình bàn cờ là kết quả của các nước đi đó Ta thể tìm kiếm trên... tới thế cờ tốt nhất Do đó sẽ không cần phải tìm kiếm gì nữa Rất tiếc, các thủ tục như vậy không hề Ta cần chiến lược tìm kiếm trong trò chơi 1 d Th ời gi an b b*b=b2 Hàm mũ 18 bd Số đỉnh Hình 1.4: Cây tìm kiếm sự bùng nổ tổ hợp 1.2.3.4 Chiến lược tìm kiếm trong trò chơi Trong Lý thuyết trò chơi đã nghiên cứu các tình huống chiến thuật trong đó các đối thủ lựa chọn các hành động khác nhau để... kiếm không thông tin là giải thuật không tính đến bản chất cụ thể của bài toán Khi đó, các giải thuật dạng này thể được cài đặt tổng quát, cùng một cài đặt thể được sử dụng trong một diện rộng các bài toán (do sử dụng trừu tượng hóa) Nhược điểm của các giải thuật này là phần lớn các không gian tìm kiếm kích thước cực kì lớn, một quá trình tìm kiếm (đặc biệt tìm kiếm theo cây) sẽ cần một... trạng thái giá trị hàm đánh giá là nhỏ nhất, trạng thái này được xem là trạng thái nhiều hứa hẹn nhất hướng tới đích Các kỹ thuật tìm kiếm sử dụng hàm đánh giá để hướng dẫn sự tìm kiếm được gọi chung là các kỹ thuật tìm kiếm có thông tin hay tìm kiếm kinh nghiệm (tìm kiếm heuristic) Các giai đoạn bản để giải quyết vấn đề bằng tìm kiếm heuristic như sau: - Tìm biểu diễn thích hợp mô tả các trạng... trên cây này để được một chiến lược chơi hiệu quả Các trò chơi này còn gọi là các trò chơi đối kháng, diễn ra giữa hai đấu thủ Nói chung, các trò chơi đó đều thể chuyển về một dạng bài toán tìm kiếm đặc biệt: tìm đường đi đến các điểm cao nhất giữa hai đấu thủ Trong trò chơi này phải tính đến mọi nước đi mà đối thủ của ta thể sử dụng Đặc điểm của các trò chơi trên như sau: - hai đấu thủ, . Trong lý thuyết trò chơi có một cách phân loại các trò chơi thành hai loại: trò chơi có tổng bằng không và trò chơi có tổng khác không. Trong những trò. bày giải thuật tìm kiếm Minimax và giải thuật cải tiến Alpha- beta áp dụng cho các trò chơi với tổng bằng không. Mỗi giải thuật được trình bày gồm các

Ngày đăng: 18/03/2013, 11:04

HÌNH ẢNH LIÊN QUAN

Hình 1.1: Mô hình chung của các vấn đề-bài toán phải giải quyết bằng phương pháp tìm kiếm lời giải.Không gian tìm kiếm là một tập hợp trạng thái - tập các nút của đồ  thị - GIẢI THUẬT TÌM KIẾM MINIMAX VÀ ỨNG DỤNG TRONG CÁC TRÒ CHƠI CÓ TỔNG BẰNG KHÔNG
Hình 1.1 Mô hình chung của các vấn đề-bài toán phải giải quyết bằng phương pháp tìm kiếm lời giải.Không gian tìm kiếm là một tập hợp trạng thái - tập các nút của đồ thị (Trang 9)
Hình 1.1: Mô hình chung của các vấn đề-bài toán phải giải quyết bằng phương pháp - GIẢI THUẬT TÌM KIẾM MINIMAX VÀ ỨNG DỤNG TRONG CÁC TRÒ CHƠI CÓ TỔNG BẰNG KHÔNG
Hình 1.1 Mô hình chung của các vấn đề-bài toán phải giải quyết bằng phương pháp (Trang 9)
Hình 1.3: Cây trò chơi - GIẢI THUẬT TÌM KIẾM MINIMAX VÀ ỨNG DỤNG TRONG CÁC TRÒ CHƠI CÓ TỔNG BẰNG KHÔNG
Hình 1.3 Cây trò chơi (Trang 17)
Hình 2.1. Một phần cây trò chơi trong trò chơi tic-tac-toe. - GIẢI THUẬT TÌM KIẾM MINIMAX VÀ ỨNG DỤNG TRONG CÁC TRÒ CHƠI CÓ TỔNG BẰNG KHÔNG
Hình 2.1. Một phần cây trò chơi trong trò chơi tic-tac-toe (Trang 29)
Hình 2.1. Một phần cây trò chơi trong trò chơi tic-tac-toe. - GIẢI THUẬT TÌM KIẾM MINIMAX VÀ ỨNG DỤNG TRONG CÁC TRÒ CHƠI CÓ TỔNG BẰNG KHÔNG
Hình 2.1. Một phần cây trò chơi trong trò chơi tic-tac-toe (Trang 29)
Hình 2.2: Không gian trạng thái của trò chơi Nim. - GIẢI THUẬT TÌM KIẾM MINIMAX VÀ ỨNG DỤNG TRONG CÁC TRÒ CHƠI CÓ TỔNG BẰNG KHÔNG
Hình 2.2 Không gian trạng thái của trò chơi Nim (Trang 30)
Hình 2.2: Không gian trạng thái của trò chơi Nim. - GIẢI THUẬT TÌM KIẾM MINIMAX VÀ ỨNG DỤNG TRONG CÁC TRÒ CHƠI CÓ TỔNG BẰNG KHÔNG
Hình 2.2 Không gian trạng thái của trò chơi Nim (Trang 30)
Hình 2.3: Minimax đối với không gian trạng thái giả - GIẢI THUẬT TÌM KIẾM MINIMAX VÀ ỨNG DỤNG TRONG CÁC TRÒ CHƠI CÓ TỔNG BẰNG KHÔNG
Hình 2.3 Minimax đối với không gian trạng thái giả (Trang 32)
Hình 2.3: Minimax đối với không gian trạng thái giả - GIẢI THUẬT TÌM KIẾM MINIMAX VÀ ỨNG DỤNG TRONG CÁC TRÒ CHƠI CÓ TỔNG BẰNG KHÔNG
Hình 2.3 Minimax đối với không gian trạng thái giả (Trang 32)
Hình 2.5:Minh họa chiến lược chơi cờ của người lẫn máy. - GIẢI THUẬT TÌM KIẾM MINIMAX VÀ ỨNG DỤNG TRONG CÁC TRÒ CHƠI CÓ TỔNG BẰNG KHÔNG
Hình 2.5 Minh họa chiến lược chơi cờ của người lẫn máy (Trang 34)
Hình 2.5:Minh họa chiến lược chơi cờ của người lẫn máy. - GIẢI THUẬT TÌM KIẾM MINIMAX VÀ ỨNG DỤNG TRONG CÁC TRÒ CHƠI CÓ TỔNG BẰNG KHÔNG
Hình 2.5 Minh họa chiến lược chơi cờ của người lẫn máy (Trang 34)
Dưới đây là bảng so sánh số nút phải xét giữa hai giải thuật Minimax và Alpha-beta. - GIẢI THUẬT TÌM KIẾM MINIMAX VÀ ỨNG DỤNG TRONG CÁC TRÒ CHƠI CÓ TỔNG BẰNG KHÔNG
i đây là bảng so sánh số nút phải xét giữa hai giải thuật Minimax và Alpha-beta (Trang 47)
Hình 2.10 : Khảo sát sự bùng nổ tổ hợp, Thuật toán Alpha-beta chỉ làm giảm sự bùng nổ tổ hợp chứ không chống được nó - GIẢI THUẬT TÌM KIẾM MINIMAX VÀ ỨNG DỤNG TRONG CÁC TRÒ CHƠI CÓ TỔNG BẰNG KHÔNG
Hình 2.10 Khảo sát sự bùng nổ tổ hợp, Thuật toán Alpha-beta chỉ làm giảm sự bùng nổ tổ hợp chứ không chống được nó (Trang 49)
Hình 2.10 : Khảo sát sự bùng nổ tổ hợp, Thuật toán Alpha-beta chỉ làm giảm sự bùng  nổ tổ hợp chứ không chống được nó - GIẢI THUẬT TÌM KIẾM MINIMAX VÀ ỨNG DỤNG TRONG CÁC TRÒ CHƠI CÓ TỔNG BẰNG KHÔNG
Hình 2.10 Khảo sát sự bùng nổ tổ hợp, Thuật toán Alpha-beta chỉ làm giảm sự bùng nổ tổ hợp chứ không chống được nó (Trang 49)
Hình 3.1 dưới đây minh họa hai trường hợp: Hai con hậu không khống chế nhau và  hai con hậu khống chế nhau: - GIẢI THUẬT TÌM KIẾM MINIMAX VÀ ỨNG DỤNG TRONG CÁC TRÒ CHƠI CÓ TỔNG BẰNG KHÔNG
Hình 3.1 dưới đây minh họa hai trường hợp: Hai con hậu không khống chế nhau và hai con hậu khống chế nhau: (Trang 51)
Mối quan hệ giữa 3 lớp thể hiện qua sơ đồ các lớp trong hình 3.2 như sau: - GIẢI THUẬT TÌM KIẾM MINIMAX VÀ ỨNG DỤNG TRONG CÁC TRÒ CHƠI CÓ TỔNG BẰNG KHÔNG
i quan hệ giữa 3 lớp thể hiện qua sơ đồ các lớp trong hình 3.2 như sau: (Trang 53)
Hình 3.2: Sơ đồ thể hiện mối liên quan giữa 3 lớp chính. - GIẢI THUẬT TÌM KIẾM MINIMAX VÀ ỨNG DỤNG TRONG CÁC TRÒ CHƠI CÓ TỔNG BẰNG KHÔNG
Hình 3.2 Sơ đồ thể hiện mối liên quan giữa 3 lớp chính (Trang 53)
Hình 3.3: Cấu trúc lớp gameAI Trong lớp gameAI có các thuộc tính đáng chú ý là: - GIẢI THUẬT TÌM KIẾM MINIMAX VÀ ỨNG DỤNG TRONG CÁC TRÒ CHƠI CÓ TỔNG BẰNG KHÔNG
Hình 3.3 Cấu trúc lớp gameAI Trong lớp gameAI có các thuộc tính đáng chú ý là: (Trang 55)
Hình 3.3: Cấu trúc lớp gameAI - GIẢI THUẬT TÌM KIẾM MINIMAX VÀ ỨNG DỤNG TRONG CÁC TRÒ CHƠI CÓ TỔNG BẰNG KHÔNG
Hình 3.3 Cấu trúc lớp gameAI (Trang 55)
Màn hình ban đầu như sau: - GIẢI THUẬT TÌM KIẾM MINIMAX VÀ ỨNG DỤNG TRONG CÁC TRÒ CHƠI CÓ TỔNG BẰNG KHÔNG
n hình ban đầu như sau: (Trang 66)
Hình 3.5 Các tùy chọn của một ván chơi - GIẢI THUẬT TÌM KIẾM MINIMAX VÀ ỨNG DỤNG TRONG CÁC TRÒ CHƠI CÓ TỔNG BẰNG KHÔNG
Hình 3.5 Các tùy chọn của một ván chơi (Trang 67)
Hình 3.4: Màn hình ban đầu của trò chơi Trong đó có các tùy chọn để tạo một ván chơi mới  - GIẢI THUẬT TÌM KIẾM MINIMAX VÀ ỨNG DỤNG TRONG CÁC TRÒ CHƠI CÓ TỔNG BẰNG KHÔNG
Hình 3.4 Màn hình ban đầu của trò chơi Trong đó có các tùy chọn để tạo một ván chơi mới (Trang 67)
Hình 3.4: Màn hình ban đầu của trò chơi Trong đó có các tùy chọn để tạo một ván chơi mới - GIẢI THUẬT TÌM KIẾM MINIMAX VÀ ỨNG DỤNG TRONG CÁC TRÒ CHƠI CÓ TỔNG BẰNG KHÔNG
Hình 3.4 Màn hình ban đầu của trò chơi Trong đó có các tùy chọn để tạo một ván chơi mới (Trang 67)
Hình 3.5 Các tùy chọn của một ván chơi - GIẢI THUẬT TÌM KIẾM MINIMAX VÀ ỨNG DỤNG TRONG CÁC TRÒ CHƠI CÓ TỔNG BẰNG KHÔNG
Hình 3.5 Các tùy chọn của một ván chơi (Trang 67)
Hình 3.6: Màn hình sau bắt đầu chơi Bàn cờ sau 2 nước đi: - GIẢI THUẬT TÌM KIẾM MINIMAX VÀ ỨNG DỤNG TRONG CÁC TRÒ CHƠI CÓ TỔNG BẰNG KHÔNG
Hình 3.6 Màn hình sau bắt đầu chơi Bàn cờ sau 2 nước đi: (Trang 68)
Hình 3.6: Màn hình sau bắt đầu chơi Bàn cờ sau 2 nước đi: - GIẢI THUẬT TÌM KIẾM MINIMAX VÀ ỨNG DỤNG TRONG CÁC TRÒ CHƠI CÓ TỔNG BẰNG KHÔNG
Hình 3.6 Màn hình sau bắt đầu chơi Bàn cờ sau 2 nước đi: (Trang 68)
Hình 3.7: Bàn cờ sau 2 nước đi. - GIẢI THUẬT TÌM KIẾM MINIMAX VÀ ỨNG DỤNG TRONG CÁC TRÒ CHƠI CÓ TỔNG BẰNG KHÔNG
Hình 3.7 Bàn cờ sau 2 nước đi (Trang 69)
Hình 3.7: Bàn cờ sau 2 nước đi. - GIẢI THUẬT TÌM KIẾM MINIMAX VÀ ỨNG DỤNG TRONG CÁC TRÒ CHƠI CÓ TỔNG BẰNG KHÔNG
Hình 3.7 Bàn cờ sau 2 nước đi (Trang 69)

TỪ KHÓA LIÊN QUAN

TRÍCH ĐOẠN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w