1. Trang chủ
  2. » Giáo Dục - Đào Tạo

ĐỀ LUYỆN THI CẤP TỐC MÔN TOÁN 2011 - ĐỀ SỐ 3 pot

6 225 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 6
Dung lượng 741,96 KB

Nội dung

http://tranduythai.violet.vn Biên soạn: Trần Duy Thái 16 PT mặt cầu nhận đoạn AB là đường kính có dạng: 2 2 2 11 13 1 5 6 6 3 6 x y z                         0,25đ CâuVIIb (1,0) Ta có: 2009 0 1 2009 2009 2009 2009 2009 (1 ) i C iC i C     0 2 4 6 2006 2008 2009 2009 2009 2009 2009 2009 1 3 5 7 2007 2009 2009 2009 2009 2009 2009 2009 ( ) C C C C C C C C C C C C i              Thấy: 1 ( ) 2 S A B   , với 0 2 4 6 2006 2008 2009 2009 2009 2009 2009 2009 A C C C C C C       0 2 4 6 2006 2008 2009 2009 2009 2009 2009 2009 B C C C C C C      + Ta có: 2009 2 1004 1004 1004 1004 (1 ) (1 )[(1 ) ] (1 ).2 2 2 i i i i i         . Đồng nhất thức ta có A chớnh là phần thực của 2009 (1 ) i  nờn 1004 2 A  . + Ta có: 2009 0 1 2 2 2009 2009 2009 2009 2009 2009 (1 ) x C xC x C x C      Cho x=-1 ta có: 0 2 2008 1 3 2009 2009 2009 2009 2009 2009 2009 C C C C C C       Cho x=1 ta có: 0 2 2008 1 3 2009 2009 2009 2009 2009 2009 2009 2009 ( ) ( ) 2 C C C C C C        . Suy ra: 2008 2 B  . + Từ đó ta có: 1003 2007 2 2 S   . 0,25đ 0,25đ 0,25đ 0,25đ ĐỀ 3 I. PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm) Câu I (2,0 điểm). Cho hàm số y = 1 2  x x . 1. Khảo sát sự biến thiên và vẽ đồ thị ( C ) của hàm số. 2. Tìm các giá trị của m để đường thẳng y = mx – m + 2 cắt đồ thị ( C ) tại hai điểm phân biệt A,B và đoạn AB có độ dài nhỏ nhất. Câu II (2,0 điểm) 1. Giải phương trình     2 cos . cos 1 2 1 sin . sin cos x x x x x     2. Giải phương trình 2 2 7 5 3 2 ( ) x x x x x x        Câu III (1,0 điểm). Tính tích phân 3 0 3 3. 1 3 x dx x x      . Câu IV (1,0 điểm). Cho tứ diện đều ABCD có cạnh bằng 1. Gọi M, N là các điểm lần lượt di động trên các cạnh AB, AC sao cho     DMN ABC  . Đặt AM = x, AN = y. Tính thể tích tứ diện DAMN theo x và y. Chứng minh rằng: 3 . x y xy   Câu V (1,0 điểm). Cho x, y, z 0  thoả mãn x+y+z > 0. Tìm giá trị nhỏ nhất của biểu thức   3 3 3 3 16 x y z P x y z      II. PHẦN RIÊNG (3,0 điểm): Thí sinh chỉ được làm một trong hai phần (phần A hoặc B). A. Theo chương trình Chuẩn: Câu VI.a (2,0 điểm) www.VNMATH.com http://tranduythai.violet.vn Biên soạn: Trần Duy Thái 17 1. Trong mặt phẳng toạ độ Oxy, cho hình chữ nhật ABCD có phương trình đường thẳng AB: x – 2y + 1 = 0, phương trình đường thẳng BD: x – 7y + 14 = 0, đường thẳng AC đi qua M(2; 1). Tìm toạ độ các đỉnh của hình chữ nhật. 2. Trong không gian toạ độ Oxyz, cho mặt phẳng (P): 2x – y – 5z + 1 = 0 và hai đường thẳng d 1 : 1 1 2 2 3 1 x y z      , d 2 : 2 2 1 5 2 x y z      Viết phương trình đường thẳng d vuông góc với (P) đồng thời cắt hai đường thẳng d 1 và d 2 . Câu VII.a (1,0 điểm). Tìm phần thực của số phức z = (1 + i) n , biết rằng n  N thỏa mãn phương trình log 4 (n – 3) + log 4 (n + 9) = 3 B. Theo chương trình Nâng cao: Câu VI.b (2,0 điểm) 1. Trong mặt phẳng toạ độ Oxy cho tam giác ABC, có điểm A(2; 3), trọng tâm G(2; 0). Hai đỉnh B và C lần lượt nằm trên hai đường thẳng d 1 : x + y + 5 = 0 và d 2 : x + 2y – 7 = 0. Viết phương trình đường tròn có tâm C và tiếp xúc với đường thẳng BG. 2. Trong không gian toạ độ cho đường thẳng d: 3 2 1 2 1 1 x y z       và mặt phẳng (P): x + y + z + 2 = 0. Gọi M là giao điểm của d và (P). Viết phương trình đường thẳng  nằm trong mặt phẳng (P), vuông góc với d đồng thời thoả mãn khoảng cách từ M tới  bằng 42 . Câu VII.b (1,0 điểm). Giải hệ phương trình   1 4 4 2 2 1 log log 1 ( , ) 25 y x y x y x y             ĐÁP ÁN ĐỀ 3 Câu Nội dung Điểm I HS tu lam 2,0 II 2.0 1 Giải phương trình     2 cos . cos 1 2 1 sin . sin cos x x x x x     1.0 ĐK: sin cos 0 x x   0.25 Khi đó         2 1 sin cos 1 2 1 sin sin cos PT x x x x x           1 sin 1 cos sin sin .cos 0 x x x x x             1 sin 1 cos 1 sin 0 x x x      0.25 sin 1 cos 1 x x         (thoả mãn điều kiện) 0.25 2 2 2 x k x m                 ,k m  Vậy phương trình đã cho có nghiệm là: 2 2 x k      và 2 x m       ,k m  0.25 2 Giải phương trình: 2 2 7 5 3 2 ( ) x x x x x x        1.0 www.VNMATH.com http://tranduythai.violet.vn Biên soạn: Trần Duy Thái 18 2 2 2 3 2 0 7 5 3 2 x x PT x x x x x                0.25 2 3 2 0 5 2( 2) x x x x x              0.25 3 1 0 2 5 2. x x x x x                     2 2 0 1 16 0 x x x             0.25 1 x    Vậy phương trình đã cho có một nghiệm x = - 1. 0.25 III Tính tích phân 3 0 3 3. 1 3 x dx x x      . 1.0 Đặt u = 2 1 1 2 x u x udu dx       ; đổi cận: 0 1 3 2 x u x u          0.25 Ta có: 3 2 2 2 3 2 0 1 1 1 3 2 8 1 (2 6) 6 3 2 1 3 1 3 x u u dx du u du du u u u x x                 0.25   2 2 1 2 6 6ln 1 1 u u u    0.25 3 3 6ln 2    0.25 IV 1.0 Dựng DH MN H   Do       DMN ABC DH ABC    mà . D ABC là tứ diện đều nên H là tâm tam giác đều ABC . 0.25 Trong tam giác vuông DHA: 2 2 2 2 3 6 1 3 3 DH DA AH              Diện tích tam giác AMN là 0 1 3 . .sin 60 2 4 AMN S AM AN xy   0.25 Thể tích tứ diện . D AMN là 1 2 . 3 12 AMN V S DH xy   0.25 D A B C H M N www.VNMATH.com http://tranduythai.violet.vn Biên soạn: Trần Duy Thái 19 Ta có: AMN AMH AMH S S S  0 0 0 1 1 1 .sin 60 . .sin30 . .sin 30 2 2 2 xy x AH y AH    3 . x y xy   0.25 V 1.0 Trước hết ta có:   3 3 3 4 x y x y    (biến đổi tương đương)     2 0 x y x y      0.25 Đặt x + y + z = a. Khi đó       3 3 3 3 3 3 3 3 64 64 4 1 64 x y z a z z P t t a a          (với t = z a , 0 1 t   ) 0.25 Xét hàm số f(t) = (1 – t) 3 + 64t 3 với t   0;1  . Có     2 2 1 '( ) 3 64 1 , '( ) 0 0;1 9 f t t t f t t            Lập bảng biến thiên 0.25     0;1 64 inf 81 t M t     GTNN của P là 16 81 đạt được khi x = y = 4z > 0 0.25 VI.a 2.0 1 1.0 Do B là giao của AB và BD nên toạ độ của B là nghiệm của hệ: 21 2 1 0 21 13 5 ; 7 14 0 13 5 5 5 x x y B x y y                           0.25 Lại có: Tứ giác ABCD là hình chữ nhật nên góc giữa AC và AB bằng góc giữa AB và BD, kí hiệu (1; 2); (1; 7); ( ; ) AB BD AC n n n a b      (với a 2 + b 2 > 0) lần lượt là VTPT của các đường thẳng AB, BD, AC. Khi đó ta có:     os , os , AB BD AC AB c n n c n n     2 2 2 2 3 2 7 8 0 2 7 a b a b a b a ab b b a                  0.25 - Với a = - b. Chọn a = 1  b = - 1. Khi đó Phương trình AC: x – y – 1 = 0, A = AB  AC nên toạ độ điểm A là nghiệm của hệ: 1 0 3 (3;2) 2 1 0 2 x y x A x y y                 Gọi I là tâm hình chữ nhật thì I = AC  BD nên toạ độ I là nghiệm của hệ: 7 1 0 7 5 2 ; 7 14 0 5 2 2 2 x x y I x y y                           Do I là trung điểm của AC và BD nên toạ độ   14 12 4;3 ; ; 5 5 C D       0.25 www.VNMATH.com http://tranduythai.violet.vn Biên soạn: Trần Duy Thái 20 - Với b = - 7a (loại vì AC không cắt BD) 0.25 2 1.0 Phương trình tham số của d 1 và d 2 là: 1 2 1 2 2 : 1 3 ; : 2 5 2 2 x t x m d y t d y m z t z m                         0.25 Giả sử d cắt d 1 tại M(-1 + 2t ; 1 + 3t ; 2 + t) và cắt d 2 tại N(2 + m ; - 2 + 5m ; - 2m) MN   (3 + m - 2t ; - 3 + 5m - 3t ; - 2 - 2m - t). 0.25 Do d  (P) có VTPT (2; 1; 5) P n    nên : p k MN kn      3 2 2 3 5 3 2 2 5 m t k m t k m t k                   có nghiệm 0.25 Giải hệ tìm được 1 1 m t      Khi đó điểm M(1; 4; 3)  Phương trình d: 1 2 4 3 5 x t y t z t            thoả mãn bài toán 0.25 VII.a Tìm phần thực của số phức z = (1 + i) n , biết rằng n  N thỏa mãn phương trình log 4 (n – 3) + log 4 (n + 9) = 3 1.0 Điều kiện: 3 n N n      Phương trình log 4 (n – 3) + log 4 (n + 9) = 3  log 4 (n – 3)(n + 9) = 3 0.25  (n – 3)(n + 9) = 4 3  n 2 + 6n – 91 = 0 7 13 n n        Vậy n = 7. 0.25 Khi đó z = (1 + i) n = (1 + i) 7 =       3 2 3 1 . 1 1 .(2 ) (1 ).( 8 ) 8 8 i i i i i i i              0.25 Vậy phần thực của số phức z là 8. 0.25 VI.b 2.0 1 1.0 Giả sử 1 2 ( ; ) 5; ( ; ) 2 7 B B B B C C C C B x y d x y C x y d x y           Vì G là trọng tâm nên ta có hệ: 2 6 3 0 B C B C x x y y          0.25 Từ các phương trình trên ta có: B(-1;-4) ; C(5;1) 0.25 Ta có (3;4) (4; 3) BG BG VTPT n     nên phương trình BG: 4x – 3y – 8 = 0 0.25 (thoả mãn) (không thoả mãn) www.VNMATH.com http://tranduythai.violet.vn Biên soạn: Trần Duy Thái 21 Bán kính R = d(C; BG) = 9 5  phương trình đường tròn: (x – 5) 2 +(y – 1) 2 = 81 25 0.25 2 1.0 Ta có phương trình tham số của d là: 3 2 2 1 x t y t z t               toạ độ điểm M là nghiệm của hệ 3 2 2 1 2 0 x t y t z t x y z                    (tham số t) (1; 3;0) M   0.25 Lại có VTPT của(P) là (1;1;1) P n  , VTCP của d là (2;1; 1) d u   . Vì  nằm trong (P) và vuông góc với d nên VTCP , (2; 3;1) d P u u n            Gọi N(x; y; z) là hình chiếu vuông góc của M trên  , khi đó ( 1; 3; ) MN x y z    . Ta có MN  vuông góc với u   nên ta có phương trình: 2x – 3y + z – 11 = 0 Lại có N  (P) và MN = 42 ta có hệ: 2 2 2 2 0 2 3 11 0 ( 1) ( 3) 42 x y z x y z x y z                   0.25 Giải hệ ta tìm được hai điểm N(5; - 2; - 5) và N(- 3; - 4; 5) 0.25 Nếu N(5; -2; -5) ta có pt 5 2 5 : 2 3 1 x y z        Nếu N(-3; -4; 5) ta có pt 3 4 5 : 2 3 1 x y z        0.25 VII.b Giải hệ phương trình   1 4 4 2 2 1 log log 1 ( , ) 25 y x y x y x y             1.0 Điều kiện: 0 0 y x y       0.25 Hệ phương trình   4 4 4 2 2 2 2 2 2 1 1 log log 1 log 1 4 25 25 25 y x y x y x y y y x y x y x y                                  0.25 2 2 2 2 2 3 3 3 25 25 9 25 10 x y x y x y y x y y y                       0.25     15 5 ; ; 10 10 15 5 ; ; 10 10 x y x y                         Vậy hệ phương trình đã cho vô nghiệm. 0.25 (không thỏa mãn đk) (không thỏa mãn đk) www.VNMATH.com . 2 + 5m ; - 2m) MN   (3 + m - 2t ; - 3 + 5m - 3t ; - 2 - 2m - t). 0.25 Do d  (P) có VTPT (2; 1; 5) P n    nên : p k MN kn      3 2 2 3 5 3 2 2 5 m t k m t k m t k . được hai điểm N(5; - 2; - 5) và N (- 3; - 4; 5) 0.25 Nếu N(5; -2 ; -5 ) ta có pt 5 2 5 : 2 3 1 x y z        Nếu N ( -3 ; -4 ; 5) ta có pt 3 4 5 : 2 3 1 x y z        0.25 VII.b. trình log 4 (n – 3) + log 4 (n + 9) = 3 1.0 Điều kiện: 3 n N n      Phương trình log 4 (n – 3) + log 4 (n + 9) = 3  log 4 (n – 3) (n + 9) = 3 0.25  (n – 3) (n + 9) = 4 3  n 2 + 6n

Ngày đăng: 27/07/2014, 12:20

TỪ KHÓA LIÊN QUAN