Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 30 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
30
Dung lượng
265 KB
Nội dung
07/25/14 Hàm số và giới hạn hàm s ố 1 PHẦN II. VI TÍCH PHÂN Chương 1. HÀM SỐ - GIỚI HẠN HÀM SỐ Chương 2. ĐẠO HÀM VÀ VI PHÂN chương 3. HÀM NHIỀU BIẾN 07/25/14 Hàm số và giới hạn hàm s ố 2 C1. HÀM SỐ - GIỚI HẠN HÀM SỐ ξ1. MỘT SỐ KHÁI NIỆM VỀ HÀM SỐ MỘT BIẾN Định nghĩa ánh xạ: Cho X, Y là hai tập bất kỳ. Nếu x ∈ X, được cho tương ứng duy nhất một y = f(x) ∈ Y theo qui tắc f, thì f được gọi là một ánh xạ từ X vào Y. Ký hiệu: )x(fyx YX:f = → )x(fx a) Đơn ánh: ∀x 1 , x 2 ∈ X, x 1 ≠ x 2 => f(x 1 ) ≠ f(x 2 ) b) Toàn ánh: Với mỗi y ∈ Y, ∃x ∈ X: y = f(x) c) Song ánh: Nếu f vừa là đơn ánh và toàn ánh d) Nếu f: X→Y là song ánh thì f -1 : Y→X là ánh xạ ngược của f 07/25/14 Hàm số và giới hạn hàm s ố 3 C1. HÀM SỐ - GIỚI HẠN HÀM SỐ Định nghĩa hàm số: Với X ⊂ R, ta gọi ánh xạ f:X→Y là một hàm số một biến. Ký hiệu là y = f(x). x: biến độc lập y: biến phụ thuộc. Tập X: miền xác định Tập f(X) = {f(x): x ∈ X}: miền giá trị của f Giá trị lớn nhất M, giá trị nhỏ nhất m của f: )x(fmaxM Xx ∈ = )x(fminm Xx ∈ = , Ví dụ: Tìm miền xác định, giá trị hàm số y = 2x 2 - 4x + 6 07/25/14 Hàm số và giới hạn hàm s ố 4 C1. HÀM SỐ - GIỚI HẠN HÀM SỐ Định nghĩa phép toán: Cho f, g cùng miền xác định X: a) f(x) = g(x), ∀ x ∈ X b) (f ± g)(x) = f(x) ± g(x), ∀x∈X c) (fg)(x) = f(x)g(x), ∀x∈X d) Hàm số f/g có miền xác định X 1 = X\{x: g(x) = 0} : 1 Xx, )x(g )x(f )x)( g f ( ∈∀= e) (af)(x) = af(x), ∀x∈X Ví dụ: Cho ba hàm số f(x) = x 2 + 6, , h(x) = x + 2 x)x(g = Xác định hàm số (f – 3h)/g và miền xác định của nó. 07/25/14 Hàm số và giới hạn hàm s ố 5 C1. HÀM SỐ - GIỚI HẠN HÀM SỐ Hàm số hợp: Giả sử y = f(u) là hàm số của biến u, đồng thời u = g(x) là hàm số của biến x. Khi đó f = f(u) = f[g(x)] là hàm số hợp của f và g. Ký hiệu f o g. Ví dụ: Dựa vào ví dụ trên tìm g o f, g o h và tìm miền xác định. Hàm số ngược: Cho hàm số f có miền xác định X. Nếu f: X→Y là một song ánh thì f -1 : Y→X được gọi là hàm số ngược của f. Gọi (C), (C -1 ) là đồ thị của f, f -1 thì đồ thị của nó đối xứng với nhau qua đường thẳng y = x. M(x,y) ∈ (C) ⇔ y = f(x) ⇔ x = f -1 (y) ⇔ N(y,x) ∈ (C -1 ) 07/25/14 Hàm số và giới hạn hàm s ố 6 C1. HÀM SỐ - GIỚI HẠN HÀM SỐ Hàm số đơn điệu: • f gọi là tăng trên (a,b) nếu: x 1 ,x 2 ∈ X: x 1 < x 2 => f(x 1 ) ≤ f(x 2 ) • f gọi là giảm trên (a,b) nếu: x 1 ,x 2 ∈ X: x 1 < x 2 => f(x 1 ) ≥ f(x 2 ) • f được gọi là bị chặn trên X nếu: ∃M: f(x)≤ M, ∀ x ∈ X Hàm số tăng hoặc giảm được gọi chung là hàm số đơn điệu. Chú ý: Một hàm số có thể không đơn điều trên miền xác định X, nhưng lại đơn điệu trên các tập D ⊂ X. 07/25/14 Hàm số và giới hạn hàm s ố 7 C1. HÀM SỐ - GIỚI HẠN HÀM SỐ Hàm số tuần hoàn: Cho hàm số f có miền xác định X. Hàm số được gọi là tuần hoàn nếu: ∃T ≠ 0: f(x+T) = f(x), ∀ x ∈ X Số T 0 > 0 nhỏ nhất (nếu có) của T được gọi là chu kỳ cơ sở của hàm số f. Ví dụ: Hàm số f(x) = sinx, g(x) = cos(x) tuần hoàn với chu kỳ cơ sở là T 0 = 2π. Hàm số f(x) = tg(x), g(x) = cotgx tuần hoàn với chu kỳ cơ sở là T 0 =π. 07/25/14 Hàm số và giới hạn hàm s ố 8 C1. HÀM SỐ - GIỚI HẠN HÀM SỐ Định nghĩa: Hàm số f có miền xác định X, với x ∈ X, -x ∈ X. a) f được gọi là hàm số chẵn nếu: f(-x) = f(x), ∀ x ∈ X b) f được gọi là hàm số lẻ nếu: f(-x) = -f(x), ∀ x ∈ X Ví dụ: Hàm số f(x) = cosx + x- x 2 là hàm số chẵn, )1xxlg()x(g 2 ++= là hàm số lẻ. Ghi chú: Gọi (C) là đồ thị của hàm số f. a) Nếu f là hàm số chẵn thì (C) đối xứng qua Oy: (x,f(x)) ∈ (C) ⇔ (-x,f(-x)) = (x,f(x)) ∈ (C) b) Nếu f là hàm số lẻ thì (C) đối xứng qua gốc toạ độ: (x,f(x)) ∈ (C) ⇔ (-x,f(-x)) = (-x,-f(x)) ∈ (C) 07/25/14 Hàm số và giới hạn hàm s ố 9 C1. HÀM SỐ - GIỚI HẠN HÀM SỐ 1. Hàm số luỹ thừa: y = x α , với α ∈ R Miền xác định của hàm số luỹ thừa phụ thuộc α. • α ∈ N: miền xác định R • α nguyên âm: miền xác định x ≠ 0. • α có dạng 1/p, p ∈ Z: miền xác định phụ thuộc vào p chẵn, lẻ • α là số vô tỉ thì qui ước chỉ xét y = x α tại mọi x ≥ 0 nếu α > 0 và tại mọi x > 0 nếu α < 0. Đồ thị của y = x α luôn qua điểm (1,1) và đi qua góc toạ độ (0,0) nếu α > 0, không đi qua góc toạ độ nếu α < 0. ξ2. PHÂN LOẠI HÀM SỐ 07/25/14 Hàm số và giới hạn hàm s ố 10 C1. HÀM SỐ - GIỚI HẠN HÀM SỐ 3. Hàm số mũ: y = a x (a > 0, a ≠ 1) Hàm số mũ xác định với mọi x dương. Hàm số mũ tăng khi a > 1. Hàm số mũ giảm khi a < 1. Điểm (0,1) luôn nằm trên đồ thị của hàm số mũ. 4. Hàm số logarit: y = log a x, a > 0, a ≠ 1 Hàm số logarit chỉ xác định với x > 0. Hàm số log a x tăng khi a > 1 Hàm số log a x giảm khi a < 1 Điểm (1,0) luôn nằm trên đồ thị Hàm số y = log a x là hàm số ngược của hàm số y = a x [...]... hằng số, hàm số luỹ thừa, hàm số mũ, hàm số logarit, hàm số lượng giác và các hàm số ngược được gọi là các hàm số sơ cấp cơ bản Các hàm số nhận được bằng cách thực hiện một số hữu hạn các phép toán tổng, hiệu, tích thương, phép lấy hàm hợp trên các hàm số sơ cấp cơ bản được gọi chung là hàm số sơ cấp Ví dụ: Hàm số f(x) là hàm số sơ cấp 2 sin( x 2 ) + 3 f ( x ) = log 3 x2 + 2 07/25/14 . 07/25/14 Hàm số và giới hạn hàm s ố 1 PHẦN II. VI TÍCH PHÂN Chương 1. HÀM SỐ - GIỚI HẠN HÀM SỐ Chương 2. ĐẠO HÀM VÀ VI PHÂN chương 3. HÀM NHIỀU BIẾN 07/25/14 Hàm số và giới hạn hàm. hàm số sơ cấp cơ bản. Các hàm số nhận được bằng cách thực hiện một số hữu hạn các phép toán tổng, hiệu, tích thương, phép lấy hàm hợp trên các hàm số sơ cấp cơ bản được gọi chung là hàm số sơ. điểm (1,1) và đi qua góc toạ độ (0,0) nếu α > 0, không đi qua góc toạ độ nếu α < 0. ξ2. PHÂN LOẠI HÀM SỐ 07/25/14 Hàm số và giới hạn hàm s ố 10 C1. HÀM SỐ - GIỚI HẠN HÀM SỐ 3. Hàm số mũ: