Nhiều hiện tượng có thể được giải thích bằng gió Mặt Trời, trong đó bao gồm: bão từ, khi dòng hạt mang điện này tác dụng lên các đường cảm ứng từ của Trái Đất; hiện tượng cực quang, được
Trang 1Gió mặt trời
Gió Mặt Trời là một luồng hạt điện tích giải phóng từ vùng thượng quyển của các ngôi sao Khi gió này được phát ra từ những ngôi sao khác với Mặt Trời của chúng ta thì nó còn được gọi là gió sao.
Gió Mặt Trời mang các hạt electron và proton ở năng lượng cao, khoảng 500 KeV, vì thế chúng có khả năng thoát ra khỏi lực hấp dẫn của các ngôi sao nhờ năng lượng nhiệt cao này Nhiều hiện tượng có thể được giải thích bằng gió Mặt Trời, trong đó bao gồm: bão từ, khi dòng hạt mang điện này tác dụng lên các đường cảm ứng từ của Trái Đất; hiện tượng cực quang, được sinh ra khi các hạt trong gió Mặt Trời tương tác với từ trường của các hành tinh và tạo nên các màu sắc đặc trưng ở ban đêm trên bầu trời; lời giải thích tại sao đuôi của các sao chổi luôn luôn hướng ra ngoài Mặt Trời; cùng với sự hình thành của các ngôi sao ở khoảng cách xa.
Trang 2Lịch sử.
Năm 1916, nhà nghiên cứu người Na Uy Kristian Birkeland đã là người đầu tiên đưa ra dự đoán về gió Mặt Trời Ông cho rằng "Theo cái nhìn của vật lý học, thì các luồng tia Mặt Trời không hoàn toàn chỉ là các hạt mang điện tích dương hoặc âm,
mà nó chứa đồng thời cả 2 điện tích này" Điều này có nghĩa là gió Mặt Trời mang đồng thời các ion âm và ion dương
Ba năm sau đó, năm 1919, Frederick Lindemann miêu tả rằng luồng điện tích là các hạt này phân cực, các proton và electron đều được phát ra từ Mặt Trời, hình thành nên gió này
Vào những năm 1930, bằng việc quan sát sự bùng nổ của các luồng hạt trong hiện tượng nhật thực, các nhà khoa học đã cho rằng nhiệt độ của cực quang Mặt Trời phải hàng triệu độ C Một vài hướng nghiên cứu hứa hẹn đã được thực hiện, để xác định nhiệt độ cực lớn này Vào giữa thập niên 1950, nhà toán học người Anh
Sydney Chapman đã thu dò và tính toán được các đặc tính của một chất khí có nhiệt độ tương đương với nhiệt độ này và xác định nó là một luồng nhiệt siêu dẫn được lan truyền trong không gian, xa hơn quỹ đạo của Trái Đất Cũng trong những năm này, một nhà khoa học người Đức có tên là Ludwig Biermann quan sát và lấy làm ngạc nhiên khi thấy các sao chổi, dù đi đến gần hoặc đi ra xa Mặt Trời, đều tạo
ra những cái đuôi hướng ra bên ngoài Mặt Trời Biermann đưa ra giả thuyết rằng
do Mặt trời đã tạo ra một luồng hạt ổn định và đẩy đuôi của các sao chổi này ra bên ngoài
Eugene Parker hiểu ra rằng luồng nhiệt từ Mặt Trời trong mô hình của Chapman,
và hiện tượng đuôi sao chổi luôn hướng ra bên ngoài Mặt Trời trong giả thuyết của Biermann cùng xuất phát từ một hiện tượng Parker chỉ ra rằng mặc dù cực quang
Trang 3của Mặt Trời bị hút mạnh mẽ bởi lực hấp dẫn, nó vẫn là một luồng dẫn nhiệt tốt và
ở nhiệt độ cao ngay cả khi cách xa với Mặt Trời Do lực hấp dẫn giảm dần với
khoảng cách, cực quang ở vùng khí quyển ngoài của Mặ Trời sẽ thoát vào trong không gian
Vì không đồng tình với quan điểm của Parker về việc cho rằng gió Mặt Trời có cường độ mạnh, nên 2 bài báo của ông gửi đến tạp chí Astrophysical Journal năm
1958 đã không được đăng Tuy nhiên nó vẫn được Subrahmanyan Chandrasekhar, giải Nobel Vật lý năm 1983, lưu giữ lại
Tháng 1 năm 1959, lần đầu tiên các quan sát và tính toán về cường độ của gió Mặt Trời đã được vệ tinh nhân tạo Luna 1 của Liên Xô thu thập và thực hiện Tuy nhiên, việc có tăng gia tốc của các luồng gió mạnh đã không được giải thích hoàn toàn bằng lý thuyết của Parker
Những năm cuối của thập niên 1990, máy đo phổ cực tím vòng (Ultraviolet
Coronagraph Spectrometer - UVCS) trên tàu vũ trụ quan sát Mặt Trời (Solar and Heliospheric Observatory - SOHO) đã phát hiện thấy các vùng tăng gia tốc của gió Mặt Trời mạnh bắt nguồn từ các cực của Mặt Trời, và chỉ ra rằng gia tốc của gió lớn hơn so với các tính toán về dự giãn nở nhiệt động lực học đơn thuần Mô hình của Parker dự đoán rằng gió Mặt Trời sẽ tạo ra các bước chuyển tiếp từ các dòng vượt
âm (supersonic) tại độ cao vào khoảng 4 lần bán kính của Mặt Trời trên quyển sáng (photosphere) Tuy nhiên, điểm chuyển tiếp này nay đã hạ xuống thấp hơn nhiều, chỉ vào khoảng 1 bán kính Mặt Trời trên quyển sáng, điều này dẫn đến
những cơ chế khác đã làm tăng gia tốc cho gió Mặt Trời
Đặc điểm.
Trong hệ Mặt Trời, các thành phần của gió Mặt Trời là tương đồng với các thành
Trang 4phần trong cực quang của Mặt Trời, ở đó có 73% là hiđrô ion hóa, 25% là heli ion hóa, phần còn lại là các ion tạp chất Trong khi thành phần của một plasma có, 95%
là các hiđrô ion bậc 1, 4% là heli ion bậc 2, và 0,5% là các ion phụ khác Thành phần chính xác của gió Mặt Trời khó được tính toán, đó là do ảnh hượng của hiện tượng dao động (fluctuation) diện rộng Một mẫu thử đã được tàu Genesis mang
về Trái Đất năm 2004 để được xét nghiệm, nhưng tàu này đã bị nổ khi vào trong tầng khí quyển của Trái Đất Cũng có khả năng cho rằng mẫu thí nghiệm Mặt Trời này đã ảnh hưởng đến hoạt động của tàu
Plasma trong gió Mặt Trời gặp heliopause
Khi đến gần Trái Đất, vận tốc của gió Mặt Trời biến đổi trong khoảng 200-889 km/s, vận tốc trung bình là vào khoảng 450 km/s Xấp xỉ 1 × 109 kg/s vật chất của Mặt Trời bị mất qua sự giải phóng gió Mặt Trời, và có khoảng một phần năm trong
số đó là do hiện tượng fussion, tương tương với khoẳng 4,5 Tg (hay 4,5 × 109 kg) khối lượng chuyển sang năng lượng mỗi giây Khối lượng tiêu hao này tương
tương với một đồi đá cao 125 m trên mặt đất, trên một giây, và với tốc độ này, thì Mặt trời sẽ ngừng hoạt động sau khi tiêu hao hết lượng vật chất của nó vào khoảng
1 × 1013 năm Tuy nhiên, những hiểu biết của chúng ta về sự hình thành của các ngôi sao chỉ ra rằng gió Mặt Trời hiện tại đã mạnh hơn so với trong quá khứ xa, vào khoảng 1000 lần, điều này sẽ ảnh hưởng nghiêm trọng đến lịch sử của các khí quyển các hành tinh, trong đó có khí quyển sao Hỏa
Khi gió Mặt Trời trở thành một plasma, thì nó sẽ mang các đặc tính của một plasma hơn là một khí đơn giản Ví dụ, nó dẫn điện rất tốt vì thế các đường sức từ từ Mặt
Trang 5Trời được mang theo cùng với gió này Áp suất động của gió chi phối áp suất từ trong cả hệ Mặt Trời vì thế từ trường bị đẩy theo đường xoắn ốc Archimedes bằng việc kết hợp chuyển động hướng ngoại và quy của Mặt Trời Phụ thuộc vào bán cầu
và pha của chu kỳ Mặt Trời, các trường xoắn ốc từ trường sẽ đi vào hoặc đi ra, từ trường sẽ đi theo hình dạng xoắn ốc này trên các phần của cực bắc và cực nam của bán cầu, nhưng với chiều ngược lại Hai vùng từ này được phân chia bởi một mặt phẳng điện helio (dòng điện được tạo ra trên một mặt cong) Mặt helio này có hình dạng gần giống với mẫu hoa soắn trên áo của diễn viên múa balê (ballet), và hình dạng của nó thay đổi theo chu kỳ của Mặt Trời, mỗi khi từ trường của Mặt Trời thay đổi, vào khoảng 11 năm Trái Đất
Gió mặt trời được thổi ra đến ranh giới hệ Mặt Trời rồi trộn lẫn với khí giữa các ngôi sao Tàu vũ trụ Pioneer 10, phóng vào 1972, đi tới Mộc Tinh và Thổ Tinh và tàu Voyager 1 hiện ở cách Mặt Trời 70 đ.v.t.v đều ghi nhận gió mặt trời đang thổi qua chúng
Ảnh hưởng.
Gió Mặt Trời là nguyên nhân dẫn đến các trận bão từ, và nó có liên hệ trực tiếp đến hiện tượng cực quang của Trái Đất và trên các hành tinh khác
Trang 6Các hạt từ gió Mặt Trời tiếp xúc với từ quyển của Trái Đất
Khi gió Mặt Trời tới Trái Đất, nó có tốc độ khoảng từ 400 km/s đến 700 km/s Nó ảnh hưởng trực tiếp đến từ quyển của Trái Đất Ở phía trước từ quyển, các dòng điện tạo ra lực ngăn chặn gió mặt trời và làm đổi hướng nó ở xung quanh vành đai bảo vệ Hiện tượng tương tự cũng xảy ra với các hành tinh trong hệ Mặt Trời có từ quyển