1. Trang chủ
  2. » Khoa Học Tự Nhiên

Ôn thi đại học toán Chuyên đề ôn thi bất đẳng thức

33 598 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 33
Dung lượng 1,3 MB

Nội dung

PHẦN 1 CÁC KIẾN THỨC CẦN LƯU Ý 1Định nghĩa 0 0 A B A B A B A B           2Tính chất + A>B B  A + A>B và B >C A  C + A>B A+C >B + C + A>B và C > D  A+C > B + D + A>B và C > 0  A.C > B.C + A>B và C < 0  A.C < B.C + 0 < A < B và 0 < C B > 0  An > Bn n + A > B  An > B n với n lẻ + A > B  An > B n với n chẵn + m > n > 0 và A > 1  Am > An + m > n > 0 và 0 0  A B 1 1  3Một số hằng bất đẳng thức + A 2  0 với  A ( dấu = xảy ra khi A = 0 ) + An  0 với  A ( dấu = xảy ra khi A = 0 ) + A  0 với A (dấu = xảy ra khi A = 0 ) + A < A = A + A B  A  B ( dấu = xảy ra khi A.B > 0) + A B  A  B ( dấu = xảy ra khi A.B < 0) PHẦN II CÁC PHƯƠNG PHÁP CHỨNG MINH BẤT ĐẲNG THỨC Phương pháp 1 : Dùng định nghĩa Kiến thức : Để chứng minh A > B. Ta lập hiệu A –B > 0 Lưu ý dùng hằng bất đẳng thức M 2  0 với M Ví dụ 1  x, y, z chứng minh rằng : a) x 2 + y2 + z 2  xy+ yz + zx b) x 2 + y2 + z 2  2xy – 2xz + 2yz c) x 2 + y2 + z 2 +3  2 (x + y + z) Giải: a) Ta xét hiệu : x2 + y2 + z 2 xy – yz – zx = 2 1 .2 .( x2 + y2 + z 2 xy – yz – zx) = 2 1   0 ( ) ( ) ( )2 2 2 x  y  x z  y  z  đúng với mọi x;y;zR Biên soan: Cao Văn Tú Trường: ĐH CNTTTT Thái Nguyên Email: caotua5lg3gmail.com Website: www.caotu.tk 2 Vì (xy)2  0 vớix ; y Dấu bằng xảy ra khi x=y (xz)2  0 vớix ; z Dấu bằng xảy ra khi x=z (yz)2  0 với z; y Dấu bằng xảy ra khi z=y Vậy x 2 + y2 + z 2  xy+ yz + zx. Dấu bằng xảy ra khi x = y =z b)Ta xét hiệu: x2 + y2 + z 2 ( 2xy – 2xz +2yz ) = x2 + y2 + z 2 2xy +2xz –2yz = ( x – y + z) 2  0 đúng với mọi x;y;zR Vậy x 2 + y2 + z 2  2xy – 2xz + 2yz đúng với mọi x;y;zR Dấu bằng xảy ra khi x+y=z c) Ta xét hiệu: x2 + y2 + z 2 +3 – 2( x+ y +z ) = x2 2x + 1 + y2 2y +1 + z 2 2z +1 = (x1)2 + (y1) 2 +(z1)2  0. Dấu(=)xảy ra khi x=y=z=1 Ví dụ 2: chứng minh rằng :

Biên soan: Cao Văn Tú Trường: ĐH CNTT&TT Thái Nguyên Email: caotua5lg3@gmail.com Website: www.caotu.tk 1 PHẦN 1 CÁC KIẾN THỨC CẦN LƯU Ý 1/Định nghĩa 0 0 A B A B A B A B            2/Tính chất + A>B AB  + A>B và B >C CA  + A>B  A+C >B + C + A>B và C > D  A+C > B + D + A>B và C > 0  A.C > B.C + A>B và C < 0  A.C < B.C + 0 < A < B và 0 < C <D  0 < A.C < B.D + A > B > 0  A n > B n n + A > B  A n > B n với n lẻ + A > B  A n > B n với n chẵn + m > n > 0 và A > 1  A m > A n + m > n > 0 và 0 <A < 1  A m < A n +A < B và A.B > 0  BA 11  3/Một số hằng bất đẳng thức + A 2  0 với  A ( dấu = xảy ra khi A = 0 ) + A n  0 với  A ( dấu = xảy ra khi A = 0 ) + 0A với A (dấu = xảy ra khi A = 0 ) + - A < A = A + A B A B   ( dấu = xảy ra khi A.B > 0) + BABA  ( dấu = xảy ra khi A.B < 0) PHẦN II CÁC PHƯƠNG PHÁP CHỨNG MINH BẤT ĐẲNG THỨC Phương pháp 1 : Dùng định nghĩa Kiến thức : Để chứng minh A > B. Ta lập hiệu A –B > 0 Lưu ý dùng hằng bất đẳng thức M 2  0 với M Ví dụ 1  x, y, z chứng minh rằng : a) x 2 + y 2 + z 2  xy+ yz + zx b) x 2 + y 2 + z 2  2xy – 2xz + 2yz c) x 2 + y 2 + z 2 +3  2 (x + y + z) Giải: a) Ta xét hiệu : x 2 + y 2 + z 2 - xy – yz – zx = 2 1 .2 .( x 2 + y 2 + z 2 - xy – yz – zx) = 2 1   0)()()( 222  zyzxyx đúng với mọi x;y;z R Biên soan: Cao Văn Tú Trường: ĐH CNTT&TT Thái Nguyên Email: caotua5lg3@gmail.com Website: www.caotu.tk 2 Vì (x-y) 2  0 vớix ; y Dấu bằng xảy ra khi x=y (x-z) 2  0 vớix ; z Dấu bằng xảy ra khi x=z (y-z) 2  0 với z; y Dấu bằng xảy ra khi z=y Vậy x 2 + y 2 + z 2  xy+ yz + zx. Dấu bằng xảy ra khi x = y =z b)Ta xét hiệu: x 2 + y 2 + z 2 - ( 2xy – 2xz +2yz ) = x 2 + y 2 + z 2 - 2xy +2xz –2yz = ( x – y + z) 2 0 đúng với mọi x;y;z R Vậy x 2 + y 2 + z 2  2xy – 2xz + 2yz đúng với mọi x;y;z R Dấu bằng xảy ra khi x+y=z c) Ta xét hiệu: x 2 + y 2 + z 2 +3 – 2( x+ y +z ) = x 2 - 2x + 1 + y 2 -2y +1 + z 2 -2z +1 = (x-1) 2 + (y-1) 2 +(z-1) 2  0. Dấu(=)xảy ra khi x=y=z=1 Ví dụ 2: chứng minh rằng : a) 2 22 22          baba ; b) 2 222 33          cbacba c) Hãy tổng quát bài toán Giải: a) Ta xét hiệu 2 22 22          baba =   4 2 4 2 2222 bababa    =   abbaba 222 4 1 2222  =   0 4 1 2 ba Vậy 2 22 22          baba . Dấu bằng xảy ra khi a=b b)Ta xét hiệu 2 222 33          cbacba =         0 9 1 222  accbba .Vậy 2 222 33          cbacba Dấu bằng xảy ra khi a = b =c c)Tổng quát 2 21 22 2 2 1          n aaa n aaa nn Tóm lại các bước để chứng minh A  B theo định nghĩa Bước 1: Ta xét hiệu H = A - B Bước 2:Biến đổi H=(C+D) 2 hoặc H=(C+D) 2 +….+(E+F) 2 Bước 3:Kết luận A  B Ví dụ 1: Chứng minh m,n,p,q ta đều có : m 2 + n 2 + p 2 + q 2 +1 m(n+p+q+1) Giải: 01 4444 2 2 2 2 2 2 2                                      m m qmq m pmp m nmn m 01 2222 2222                              m q m p m n m (luôn đúng) Biên soan: Cao Văn Tú Trường: ĐH CNTT&TT Thái Nguyên Email: caotua5lg3@gmail.com Website: www.caotu.tk 3 Dấu bằng xảy ra khi                01 2 0 2 0 2 0 2 m q m p m n m               2 2 2 2 m m q m p m n       1 2 qpn m Ví dụ 2: Chứng minh rằng với mọi a, b, c ta luôn có : )( 444 cbaabccba  Giải: Ta có : )( 444 cbaabccba  , 0,,  cba                         0 0)2( )2()2( 0222 222 0222222 0 222 2 22 2 22 2 22 22222 2222222222 2 22 2 22 2 22 222 22 2 2222 2 2222 2 22 222444 222444        acabacbcbcabaccbba abaacba abcaccbacbcbbaaccbba abcacbbca caaccbcbbaba abcacbbcacba abcacbbcacba Đúng với mọi a, b, c. Phương pháp 2 : Dùng phép biến đổi tương đương Kiến thức: Ta biến đổi bất đẳng thức cần chứng minh tương đương với bất đẳng thức đúng hoặc bất đẳng thức đã được chứng minh là đúng. Nếu A < B  C < D , với C < D là một bất đẳng thức hiển nhiên, hoặc đã biết là đúng thì có bất đẳng thức A < B . Chú ý các hằng đẳng thức sau:   22 2 2 BABABA    BCACABCBACBA 222 222 2    3223 3 33 BABBAABA  Ví dụ 1: Cho a, b, c, d,e là các số thực chứng minh rằng a) ab b a  4 2 2 b) baabba  1 22 c)   edcbaedcba  22222 Giải: a) ab b a  4 2 2 abba 44 22  044 22  baa   02 2  ba (BĐT này luôn đúng). Vậy ab b a  4 2 2 (dấu bằng xảy ra khi 2a=b) b) baabba  1 22  )(21(2 22 baabba  012122 2222  bbaababa 0)1()1()( 222  baba Bất đẳng thức cuối đúng. Vậy baabba  1 22 . Dấu bằng xảy ra khi a=b=1 Biên soan: Cao Văn Tú Trường: ĐH CNTT&TT Thái Nguyên Email: caotua5lg3@gmail.com Website: www.caotu.tk 4 c)   edcbaedcba  22222      edcbaedcba  44 22222          044444444 22222222  cacadadacacababa          02222 2222  cadacaba Bất đẳng thức đúng vậy ta có điều phải chứng minh Ví dụ 2: Chứng minh rằng:       4488221010 babababa  Giải:       4488221010 babababa   128448121210221012 bbabaabbabaa       0 22822228  abbababa  a 2 b 2 (a 2 -b 2 )(a 6 -b 6 )  0  a 2 b 2 (a 2 -b 2 ) 2 (a 4 + a 2 b 2 +b 4 )  0 Bất đẳng thứccuối đúng vậy ta có điều phải chứng minh Ví dụ 3: cho x.y =1 và x  y Chứng minh yx yx   22  22 Giải: yx yx   22  22 vì :x  y nên x- y  0  x 2 +y 2  22 ( x-y)  x 2 +y 2 - 22 x+ 22 y  0  x 2 +y 2 +2- 22 x+ 22 y -2  0  x 2 +y 2 +( 2 ) 2 - 22 x+ 22 y -2xy  0 vì x.y=1 nên 2.x.y=2  (x-y- 2 ) 2  0 Điều này luôn luôn đúng . Vậy ta có điều phải chứng minh Ví dụ 4: Chứng minh rằng: a/ P(x,y)= 01269 222  yxyyyx Ryx  , b/ cbacba  222 (gợi ý :bình phương 2 vế) c/ Cho ba số thực khác không x, y, z thỏa mãn:        zyx zyx zyx 111 1 Chứng minh rằng :có đúng một trong ba số x,y,z lớn hơn 1 Giải: Xét (x-1)(y-1)(z-1)=xyz+(xy+yz+zx)+x+y+z-1 =(xyz-1)+(x+y+z)-xyz( zyx 111  )=x+y+z - ( 0) 111  zyx (vì zyx 111  < x+y+z theo gt)  2 trong 3 số x-1 , y-1 , z-1 âm hoặc cả ba sỗ-1 , y-1, z-1 là dương. Nếu trường hợp sau xảy ra thì x, y, z >1  x.y.z>1 Mâu thuẫn gt x.y.z=1 bắt buộc phải xảy ra trường hợp trên tức là có đúng 1 trong ba số x ,y ,z là số lớn hơn 1 Ví dụ 5: Chứng minh rằng : 21        ca c cb b ba a Giải: Ta có : )1( 11 cba a ba a cbaba cbaba         Tương tự ta có : )2( cba b cb b    , )3( cba c ca c    Cộng vế theo vế các bất đẳng thức (1), (2), (3), ta được : 1      ca c cb b ba a (*) Biên soan: Cao Văn Tú Trường: ĐH CNTT&TT Thái Nguyên Email: caotua5lg3@gmail.com Website: www.caotu.tk 5 Ta có : )4( cba ca ba a baa      Tương tự : )5( cba ba cb b     , )6( cba bc ac c     Cộng vế theo vế các bất đẳng thức (4), (5), (6), ta được : 2      ca c cb b ba a (**) Từ (*) và (**) , ta được : 21        ca c cb b ba a (đpcm) Phương pháp 3: Dùng bất đẳng thức phụ Kiến thức: a) xyyx 2 22  b) xyyx  22 dấu( = ) khi x = y = 0 c)   xyyx 4 2  d) 2 a b b a Ví dụ 1 Cho a, b ,c là các số không âm chứng minh rằng (a+b)(b+c)(c+a)  8abc Giải: Dùng bất đẳng thức phụ:   xyyx 4 2  Tacó   abba 4 2  ;   bccb 4 2  ;   acac 4 2     2 ba    2 cb   2 ac     2 222 864 abccba   (a+b)(b+c)(c+a)  8abc Dấu “=” xảy ra khi a = b = c Phương pháp 4: Bất đẳng thức Cô sy Kiến thức: a/ Với hai số không âm : 0, ba , ta có: abba 2 . Dấu “=” xảy ra khi a=b b/ Bất đẳng thức mở rộng cho n số không âm : n n n n nn n aaa aaa aaanaaa          21 21 2121 Dấu “=” xảy ra khi n aaa  21 Chú ý : ta dùng bất đẳng thức Côsi khi đề cho biến số không âm. Ví dụ 1 : Giải phương trình : 2 3 42 2 12 4 14 2       xx x x x x x Giải : Nếu đặt t =2 x thì pt trở thành pt bậc 6 theo t nên ta đặt 0,, 4 2         ba b a x x Khi đó phương trình có dạng : 2 31 11       baa b b a Vế trái của phương trình: Biên soan: Cao Văn Tú Trường: ĐH CNTT&TT Thái Nguyên Email: caotua5lg3@gmail.com Website: www.caotu.tk 6         1 1 1 1 1 1 1 3 3 1 1 1 1 1 1 1 1 1 1 3 1 1 3 1 1 1 1 a b a b a b a b b a a b b a a b a b c b a a b b a a b b a a b                                                                                                       2 3 3 11 3 .113 2 1 3 3    baba baba Vậy phương trình tương đương với : 0142111  xbababa xx . Ví dụ 2 : Cho x, y , z > 0 và x + y + z = 1. Tìm GTLN của P = 111      z z y y x x Giải : P = 3- ( 1 1 1 1 1 1      zyx ) = 3 – Q. Theo BDT Côsi , nếu a, b, c > 0 thì   3 3 1 1 1 1 1 1 1 1 1 1 9 3 3 9a b c abc a b c a b c abc a b c a b c a b c                      Suy ra Q = 1 1 1 1 1 1      zyx 4 9   -Q 4 9  nên P = 3 – Q  3- 4 9 = 4 3 Vậy max P = 4 3 .khi x = y = z = 3 1 . Ví dụ 3: Cho a, b, c >0 . Chứng minh rằng: abc cba abcacbbca 2 111 222        Giải: Áp dụng bất đẳng thức Côsi ta có :          acab bca bca bcabca 11 2 112 2 2 2 Tương tự : 22 2 2 2 2 1 1 1 1 2 1 1 1 1 22 2 2 2 2 b ac bc ab c ab ac bc b ac c ab abc a bc b ac c ab abc                                 Dấu “=” xảy ra khi a = b = c. Ví dụ 4 : CMR trong tam giác ABC : 3      cba c bac b acb a (*) Giải : Theo bất đẳng thức Côsi : )1( ))()(( 3 3 cbabacacb abc cba c bac b acb a        Cũng theo bất đẳng thức Côsi : )2()( 2 1 ))(( cbacacbbacacb  Viết tiếp hai BDT tương tự (2) rồi nhân với nhau sẽ được )3(1 ))()(( ))()((     cbabacacb abc abccbabacacb Biên soan: Cao Văn Tú Trường: ĐH CNTT&TT Thái Nguyên Email: caotua5lg3@gmail.com Website: www.caotu.tk 7 Từ (1),(3) suy ra (*). Dấu “=” xảy ra khi a = b = c hay ABC là đều . Ví dụ 5: Cho      zyx cba ,,0 0 . Chứng minh rằng:       2 2 4 zyx ac ca c z b y a x czby           Giải: Đặt 0)()( 2  acxcaxxf có 2 nghiệm a,c Mà: 0)(0)( 2  acbcabbfcba          zyxca c z b y a x aczcybxa zcaycaxca c z aczc b y acyb a x acxa yca b y acybca b ac b                  )()()( Theo bất đẳng thức Cauchy ta có:                  )( 4 4 2 2 2 22 đpcmzyx ac ca c z b y a x aczcybxa zyxca c z b y a x aczcybxa zyxca c z b y a x aczcybxa                           Phương pháp 5 Bất đẳng thức Bunhiacopski Kiến thức: Cho 2n số thực ( 2n ): nn bbbaaa , ,,,, , 2121 . Ta luôn có: ) )( () ( 22 2 2 1 22 2 2 1 2 2211 nnnn bbbaaabababa  Dấu “=” xảy ra khi n n b a b a b a  2 2 1 1 Hay n n a b a b a b  2 2 1 1 (Quy ước : nếu mẫu = 0 thì tử = 0 ) Chứng minh: Đặt        22 2 2 1 22 2 2 1 n n bbbb aaaa  Nếu a = 0 hay b = 0: Bất đẳng thức luôn đúng.  Nếu a,b > 0: Đặt:   ni b b a a i i i i , 2,1,   , Thế thì: 22 2 2 1 22 2 2 1 nn   Mặt khác:   22 2 1 iiii   Suy ra: babababa nn nnnn 1) ( 2 1 ) ( 2 1 2211 22 2 2 1 22 2 2 12211    Biên soan: Cao Văn Tú Trường: ĐH CNTT&TT Thái Nguyên Email: caotua5lg3@gmail.com Website: www.caotu.tk 8 Lại có: nnnn babababababa  22112211 Suy ra: ) )( () ( 22 2 2 1 22 2 2 1 2 2211 nnnn bbbaaabababa  Dấu”=” xảy ra   n n nn ii b a b a b a dáucùng ni       , ,2,1 2 2 1 1 11   Ví dụ 1 : Chứng minh rằng: Rx , ta có: 8 1 cossin 88  xx Giải: Ta có: Rxxx  ,1cossin 22 Theo bất đẳng thức Bunhiacopski, ta có:        2 2 4 4 2 2 2 4 4 4 4 1 sin .1 cos .1 sin cos 1 1 11 sin cos sin cos 24 x x x x x x x x            Sử dụng bất đẳng thức Bunhiacopski một lần nữa:        2 4 4 8 8 2 2 4 4 1 1 1 sin .1 cos .1 sin cos 1 1 sin cos 4 4 8 x x x x x x          Ví dụ 2: Cho tam giác ABC có các góc A,B,C nhọn. Tìm GTLN của: ACCBBAP tan.tan1tan.tan1tan.tan1  Giải: * Bất đẳng thức Bunhiacopski mở rộng Cho m bộ số, mỗi bộ số gồm n số không âm: ), ,2,1)(, ,,( micba iii  Thế thì: ) )( )( () ( 222111 2 212121 m m m m m m mmmmmm mmm cbacbacbacccbbbaaa  Dấu”=” xảy ra  bô số (a,b,….,c) sao cho: với mỗi i = 1,2,…,m thì  i t sao cho: iiiiii ctcbtbata  , ,, , Hay nnn cbacbacba ::: ::: :: 222111  Ví dụ 1: Cho      2, 3 22 2 2 1 nZn aaa n Chứng minh rằng: 2 1 32 21    n a aa n Giải: * Nk  ta có:                  2 1 2 1 1 4 1 11 2 2 kk k k 2 2 2 2 1 1 1 11 22 1 1 1 1 1 1 1 1 1 1 1 2 3 5 5 7 1 1 3 1 2 3 3 2 2 2 2 2 2 2 2 k kk n n n n                                           Do đó theo bất đẳng thức Bunhiacopski: 2 3 2 3 1 3 1 2 1 1 32 222 22 2 2 1 21    n aaa n a aa n n (đpcm) Biên soan: Cao Văn Tú Trường: ĐH CNTT&TT Thái Nguyên Email: caotua5lg3@gmail.com Website: www.caotu.tk 9 Ví dụ 2: Cho 4 số a,b,c,d bất kỳ chứng minh rằng: 222222 )()( dcbadbca  Giải: Dùng bất đẳng thức Bunhiacopski: Tacó ac+bd  2222 . dcba  mà       2222 22 2 dcbdacbadbca    22222222 .2 dcdcbaba   222222 )()( dcbadbca  Ví dụ 3: Chứng minh rằng : acbcabcba  222 Giải: Dùng bất đẳng thức Bunhiacopski Cách 1: Xét cặp số (1,1,1) và (a,b,c) ta có     2 222222 .1.1.1)(111 cbacba   3     acbcabcbacba  2 222222  acbcabcba  222 Điều phải chứng minh Dấu bằng xảy ra khi a=b=c Phương pháp 6: Bất đẳng thức Trê- bư-sép Kiến thức: a)Nếu      n n bbb aaa 21 21 thì n bababa n bbb n aaa nnnn    . 22112121 . Dấu ‘=’ xảy ra khi và chỉ khi      n n bbb aaa 21 21 b)Nếu      n n bbb aaa 21 21 thì n bababa n bbb n aaa nnnn    . 22112121 Dấu ‘=’ xảy ra khi và chỉ khi      n n bbb aaa 21 21 Ví dụ 1: Cho  ABC có 3 góc nhọn nội tiếp đường tròn bán kính R = 1 và . 3 2 sinsinsin 2sin.sin2sin.sin2sin.sin S CBA CCBBaA    S là diện tích tan giác. chứng minh rằng  ABC là tam giác đều. Giải: Không giảm tính tổng quát ta giả sư . 2 0   CBA Suy ra:      CBa CBA 2sin2sin2sin sinsinsin Áp dụng BĐT trebusep ta được:      )2sin2sin2(sin 3 1 sinsinsin 2sin.sin2sin.sin2sin.sin 2sin.sin2sin.sin2sin.sin3 2sin2sin2sinsinsinsin CBA CBA CCBBAA CCBBAA CBACBA       Dấu ‘=’ xảy ra dêuABC CBA CBA        2sin2sin2sin sinsinsin Mặt khác: Biên soan: Cao Văn Tú Trường: ĐH CNTT&TT Thái Nguyên Email: caotua5lg3@gmail.com Website: www.caotu.tk 10     )2(2sin sin).sin2)(sin2( sinsinsin4sin.sin2.sin2 )cos()cos(sin2cos)cos(sin2 2sin)cos().sin(22sin2sin2sin SCbaCBRAR CBABAC BABACCBAC CBABACBA     Thay (2) vào (1) ta có . 3 2 sinsinsin 2sin.sin2sin.sin2sin.sin S CBA CCBBaA    Dấu ‘=’ xảy ra  ABC đều. Ví dụ 2(HS tự giải): a/ Cho a,b,c>0 và a+b+c=1 CMR: 9 111  cba b/ Cho x,y,z>0 và x+y+z=1 CMR:x+2y+z )1)(1)(1(4 zyx  c/ Cho a>0 , b>0, c>0 CMR: 2 3       ba c ac b cb a d)Cho x 0 ,y 0 thỏa mãn 12  yx ;CMR: x+y 5 1  Ví dụ 3: Cho a>b>c>0 và 1 222  cba . Chứng minh rằng 3 3 3 1 2 a b c b c a c a b     Giải: Do a,b,c đối xứng ,giả sử a  b  c             ba c ca b cb a cba 222 Áp dụng BĐT Trê- bư-sép ta có                   ba c ca b cb acba ba c c ca b b cb a a . 3 222 222 = 2 3 . 3 1 = 2 1 Vậy 2 1 333       ba c ca b cb a Dấu bằng xảy ra khi a=b=c= 3 1 Ví dụ 4: Cho a,b,c,d>0 và abcd =1 .Chứng minh rằng :       10 2222  acddcbcbadcba Giải: Ta có abba 2 22  cddc 2 22  Do abcd =1 nên cd = ab 1 (dùng 2 11  x x ) Ta có 4) 1 (2)(2 222  ab abcdabcba (1) Mặt khác:       acddcbcba  = (ab+cd)+(ac+bd)+(bc+ad) = 222 111                       bc bc ac ac ab ab Vậy       10 2222  acddcbcbadcba Phương pháp7 Bất đẳng thức Bernouli [...]... R + Phương pháp 16: Chứng minh phản chứng Kiến thức: 1) Giả sử phải chứng minh bất đẳng thức nào đó đúng , ta hãy giả sử bất đẳng thức đó sai và kết hợp với các giả thi t để suy ra điều vô lý , điều vô lý có thể là điều trái với giả thi t , có thể là điều trái ngược nhau Từ đó suy ra bất đẳng thức cần chứng minh là đúng 2) Giả sử ta phải chứng minh luận đề “p  q” Website: www.caotu.tk 21 Biên soan:... Dùng quy nạp toán học Kiến thức: Để chứng minh bất đẳng thức đúng với n  n0 ta thực hiện các bước sau : 1 – Kiểm tra bất đẳng thức đúng với n  n0 2 - Giả sử BĐT đúng với n =k (thay n =k vào BĐT cần chứng minh được gọi là giả thi t quy nạp ) 3- Ta chứng minh bất đẳng thức đúng với n = k +1 (thay n = k+1vào BĐT cần chứng minh rồi biến đổi để dùng giả thi t quy nạp) 4 – kết luận BĐT đúng với mọi n ...    , x  R Giải: n=1: Bất đẳng thức luôn đúng n=k :giả sử bất đẳng thức đúng, tức là: sin kx  k sin x n= k+1 Ta cần chứng minh: sin( k 1) x  (k 1) sin x  a  b  a  b , a, b  R   sin x , cos x  1, x  R  Ta có:  Nên: sin( k  1) x  sin kx cos x  cos kxsin x  sin kx cos x  cos kx sin x  sin kx  sin x  k sin x  sin x  (k  1) sin x  Bất đẳng thức đúng với n= k+1 Vậy: sin... 0 và b +c < 0  a + b +c < 0 trái giả thi t a+b+c > 0 Vậy a > 0 tương tự ta có b > 0 , c > 0 Ví dụ 2:Cho 4 số a , b , c ,d thỏa mãn điều kiện ac  2.(b+d) Chứng minh rằng có ít nhất một trong các bất đẳng thức sau là sai: , c2  4d a 2  4b Giải: Giả sử 2 bất đẳng thức : a 2  4b , c2  4d đều đúng khi đó cộng các vế ta được a 2  c 2  4(b  d ) (1) Theo giả thi t ta có 4(b+d)  2ac (2) Từ (1) và... tập đề nghị : Bài 1:Chứng minh rằng với mọi a,b,c > 0 : a b c 1 1 1      bc ac ab a b c HD : Chuyển vế quy đồng mẫu đưa về tổng bình phương các đẳng thức Bài 2:Chứng minh bất đẳng thức : HD: 1 1 1 1     1 1.2 2.3 3.4 n(n  1) (n  N *) 1 1 1   k (k  1) k k  1 1 1 1 Bài 3: Cho a, b c > 0 và a + b + c  1 Cmr : 1  1  1    64      a  b  c  1 1 1 HD : Áp dụng bất đẳng thức. .. (với p : giả thi t đúng, q : kết luận đúng) phép chứng minh được thực hiên như sau: Giả sử không có q ( hoặc q sai) suy ra điều vô lý hoặc p sai Vậy phải có q (hay q đúng) Như vậy để phủ định luận đề ta ghép tất cả giả thi t của luận đề với phủ định kết luận của nó Ta thường dùng 5 hình thức chứng minh phản chứng sau : A - Dùng mệnh đề phản đảo : “P  Q” B – Phủ định rôi suy trái giả thi t C – Phủ... caotua5lg3@gmail.com Ví dụ 6: Cho 1  n   , ai , bi  R, i  1,2, , n Chứng minh rằng: ( 2 2 a1  a2    an 2 a12  a2    an )  n n Giải: n=1: Bất đẳng thức luôn đúng 2 2 a1  a2    ak 2 a12  a2    ak )  n=k ( k   ):giả sử bất đẳng thức đúng, tức là: ( k k 2 2 2 a  a    ak 1 2 a1  a2    ak 1 )  n= k+1 Ta cần chứng minh: ( 1 2 (1) k 1 k 1 a  a    ak 1 Đặt: a  2...  n n  Cộng từng vế các bất đẳng thức trên ta có 1  Ví dụ 3: Chứng minh rằng n k 1 Giải: Ta có 1 k 2 2  n Z 1 1 1 1    2 k k k  1 k  1 k Cho k chạy từ 2 đến n ta có 1 1  1 2 2 2 1 1 1   32 2 3 1 1 1 1 1 1    2  2   2  1 2 n n 1 n 2 3 n Vậy n 1 k k 1 2  1 1 1     2 n  1 1 2 3 n 2 Phương pháp 11: Dùng bất đẳng thức trong tam giác Kiến thức: Nếu a;b;clà số đo ba... Không mất tính tổng quát ta giả sử : a b a b a ab b Từ :      c d c d c cd d a  1 vì a+b = c+d c b a b  998    999 d c d a b 1 999 b/Nếu: b=998 thì a=1   =  Đạt giá trị lớn nhất khi d= 1; c=999 d c d c a b 1 Vậy giá trị lớn nhất của  =999+ khi a=d=1; c=b=999 c d 999 a/ Nếu :b  998 thì Phương pháp 10: Phương pháp làm trội Kiến thức: Dùng các tính bất đẳng thức để đưa một vế của bất đẳng. .. giả thi t cho a  -b  a  b  a k  b  bk k Website: www.caotu.tk  a k   b k a  b  0 19 Biên soan: Cao Văn Tú Trường: ĐH CNTT&TT Thái Nguyên Email: caotua5lg3@gmail.com (+) Giả sử a < b và theo giả thi t - a . thức: Ta biến đổi bất đẳng thức cần chứng minh tương đương với bất đẳng thức đúng hoặc bất đẳng thức đã được chứng minh là đúng. Nếu A < B  C < D , với C < D là một bất đẳng thức. b = c Phương pháp 4: Bất đẳng thức Cô sy Kiến thức: a/ Với hai số không âm : 0, ba , ta có: abba 2 . Dấu “=” xảy ra khi a=b b/ Bất đẳng thức mở rộng cho n số không âm : n n n n nn n aaa aaa aaanaaa          . (đpcm) Phương pháp 15: Dùng quy nạp toán học Kiến thức: Để chứng minh bất đẳng thức đúng với 0 nn  ta thực hiện các bước sau : 1 – Kiểm tra bất đẳng thức đúng với 0 nn  2 - Giả sử

Ngày đăng: 21/07/2014, 09:28

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w