Chuyên đề: HỆ PHƯƠNG TRÌNH ĐẠI SỐ NHỮNG NỘI DUNG CƠ BẢN I. Hệ phương trình đối xứng loại 1: Phần 1- Định nghĩa chung: Dựa vào lý thuyết đa thức đối xứng. − Phương trình n ẩn x 1 , x 2 , , x n gọi là đối xứng với n ẩn nếu thay x i bởi x j ; x j bởi x i thì phương trình không thay đổi. − Khi đó phương trình luôn được biểu diễn dưới dạng: x 1 + x 2 + + x n x 1 x 2 + x 1 x 3 + + x 1 x n + x 2 x 1 + x 2 x 3 + + x n-1 x n x 1 x 2 x n − Hệ phương trình đối xứng loại một là hệ mà trong đó gồm các phương trình đối xứng. − Để giải được hệ phương trình đối xứng loại 1 ta phải dùng định lý Viét. * Nếu đa thức F(x) = a 0 x n + a 1 x n − 1 + a n , a 0 ≠ 0, a i ∈ P có nhgiệm trên P là c 1 , , c n thì: 1 1 2 0 2 1 2 1 3 1 2 1 2 3 -1 0 1 1 0 ( 1) . n n n n n n n a c c c a a c c c c c c c c c c c c a a c c c a + + + = − + + + + + + + = = − (Định lý Viét tổng quát) Phần 2 – Hệ phương trình đối xứng loại 1 hai ẩn: A. LÝ THUUYẾT 1. Định lý Viét cho phương trình bậc 2: Nếu phương trình bậc hai ax 2 + bx + c = 0 có hai nghiệm x 1 , x 2 thì: 1 2 1 2 . b S x x a c P x x a = + = − = = Ngược lại, nếu 2 số x 1 , x 2 có 1 2 1 2 . x x S x x P + = = thì x 1 , x 2 là nghệm của phương trình X 2 − SX + P = 0. 2. Định nghĩa: ( , ) 0 ( , ) 0 f x y g x y = = , trong đó ( , ) ( , ) ( , ) ( , ) f x y f y x g x y g y x = = 3.Cách giải: Bước 1: Đặt điều kiện (nếu có). Bước 2: Đặt S = x + y, P = xy với điều kiện của S, P và 2 4S P≥ . Bước 3: Thay x, y bởi S, P vào hệ phương trình. Giải hệ tìm S, P rồi dùng Viét đảo tìm x, y. Chú ý: + Cần nhớ: x 2 + y 2 = S 2 – 2P, x 3 + y 3 = S 3 – 3SP. + Đôi khi ta phải đặt ẩn phụ u = u(x), v = v(x) và S = u + v, P = uv. + Có những hệ phương trình trở thành đối xứng loại 1 sau khi đặt ẩn phụ. 4. Bài tập: Loại 1: Giải hệ phương trình Ví dụ 1. Giải hệ phương trình 2 2 3 3 30 35 x y xy x y + = + = . GIẢI Đặt S , Px y xy= + = , điều kiện 2 4S P≥ . Hệ phương trình trở thành: 1 2 2 30 P SP 30 S 90 S(S 3P) 35 S S 35 S ì ï ï = ï ì =ï ï ï ï Û í í æ ö ï ï - = ÷ ç ï ï î - = ÷ ç ï ÷ ç ÷ ï è ø ï î S 5 x y 5 x 2 x 3 P 6 xy 6 y 3 y 2 ì ì ì ì = + = = = ï ï ï ï ï ï ï ï Û Û Û Ú í í í í ï ï ï ï = = = = ï ï ï ï î î î î . Ví dụ 2. Giải hệ phương trình 3 3 ( ) 2 2 xy x y x y − = − − = . GIẢI Đặt , , t y S x t P xt= − = + = , điều kiện 2 4S P≥ Hệ phương trình trở thành: 3 3 3 xt(x t) 2 SP 2 x t 2 S 3SP 2 ì ì + = =ï ï ï ï Û í í ï ï + = - = ï ï î î S 2 x 1 x 1 P 1 t 1 y 1 ì ì ì = = = ï ï ï ï ï ï Û Û Û í í í ï ï ï = = = - ï ï ï î î î . Ví dụ 3. Giải hệ phương trình 2 2 2 2 1 1 4 1 1 4 x y x y x y x y + + + = + + + = . GIẢI Điều kiện 0, 0x y≠ ≠ . Hệ phương trình tương đương với: 2 2 1 1 x y 4 x y 1 1 x y 8 x y ì æ ö æ ö ï ÷ ÷ ç ç ï + + + = ÷ ÷ ç ç ï ÷ ÷ ç ç÷ ÷ ï è ø è ø ï í ï æ ö æ ö ï ÷ ÷ ç ç + + + = ÷ ÷ ï ç ç ÷ ÷ ï ç ç ÷ ÷ è ø è ø ï î Đặt 2 1 1 1 1 S x y ,P x y ,S 4P x y x y æ ö æ ö æ öæ ö ÷ ÷ ÷ ÷ ç ç ç ç = + + + = + + ³ ÷ ÷ ÷ ÷ ç ç ç ç ÷ ÷ ÷ ÷ ç ç ç ç ÷ ÷ ÷ ÷ è ø è ø è øè ø ta có: 2 1 1 x y 4 S 4 S 4 x y P 4 1 1 S 2P 8 x y 4 x y ì æ ö æ ö ï ÷ ÷ ç ç ï + + + = ÷ ÷ ç ç ï ì ì ÷ ÷ =ï = ï ç ç ÷ ÷ ï è ø è ø ï ï ï Û Û í í í æ öæ ö ï ï ï = - = ÷ ÷ ç ç ï ï ï îî + + = ÷ ÷ ç ç ï ÷ ÷ ç ç÷ ÷ ï è øè ø ï î 1 x 2 x 1 x 1 y 1 y 2 y ì ï ï + = ï ì = ï ï ï ï Û Û í í ï ï = ï ï î + = ï ï ï î . Ví dụ 4. Giải hệ phương trình 2 2 2 8 2 (1) 4 (2) x y xy x y + + = + = . GIẢI Điều kiện , 0x y ≥ . Đặt 0t xy= ≥ , ta có: 2 xy t= và (2) x y 16 2tÞ + = - . Thế vào (1), ta được: 2 t 32t 128 8 t t 4- + = - Û = Suy ra: xy 16 x 4 x y 8 y 4 ì ì = = ï ï ï ï Û í í ï ï + = = ï ï î î . Loại 2: Điều kiện tham số để hệ đối xứng loại (kiểu) 1 có nghiệm Phương pháp giải chung: + Bước 1: Đặt điều kiện (nếu có). + Bước 2: Đặt S = x + y, P = xy với điều kiện của S, P và 2 4S P≥ (*). + Bước 3: Thay x, y bởi S, P vào hệ phương trình. Giải hệ tìm S, P theo m rồi từ điều kiện (*) tìm m. Chú ý: Khi ta đặt ẩn phụ u = u(x), v = v(x) và S = u + v, P = uv thì nhớ tìm chính xác điều kiện của u, v. Ví dụ 1 (trích đề thi ĐH khối D – 2004). Tìm điều kiện m để hệ phương trình sau có nghiệm thực: 2 1 1 3 x y x x y y m + = + = − . GIẢI Điều kiện , 0x y ≥ ta có: 3 3 x y 1 x y 1 x x y y 1 3m ( x) ( y) 1 3m ì ì ï ï + = + = ï ï ï ï Û í í ï ï + = - + = - ï ï ï ï î î Đặt S x y 0,P xy 0= + ³ = ³ , 2 S 4P.³ Hệ phương trình trở thành: 3 S 1 S 1 P m S 3SP 1 3m ì ì =ï = ï ï ï Û í í ï ï = - = - ï ï îî . Từ điều kiện 2 S 0,P 0,S 4P³ ³ ³ ta có 1 0 m 4 £ £ . Ví dụ 2. Tìm điều kiện m để hệ phương trình 2 2 3 9 x y xy m x y xy m + + = + = − có nghiệm thực. GIẢI 2 2 x y xy m (x y) xy m xy(x y) 3m 9 x y xy 3m 9 ì ì + + =ï + + = ï ï ï Û í í ï ï + = - + = - ï ï îî . Đặt S = x + y, P = xy, 2 S 4P.³ Hệ phương trình trở thành: S P m SP 3m 9 ì + = ï ï í ï = - ï î . Suy ra S và P là nghiệm của phương trình 2 t mt 3m 9 0- + - = S 3 S m 3 P m 3 P 3 ì ì = = - ï ï ï ï Þ Ú í í ï ï = - = ï ï î î . Từ điều kiện ta suy ra hệ có nghiệm 2 2 3 4(m 3) 21 m m 3 2 3 (m 3) 12 4 é ³ - ê Û Û £ Ú ³ + ê - ³ ê ë . Ví dụ 3. Tìm điều kiện m để hệ phương trình 4 1 4 3 x y x y m − + − = + = có nghiệm. GIẢI Đặt u x 4 0, v y 1 0= - ³ = - ³ hệ trở thành: 2 2 u v 4 u v 4 21 3m u v 3m 5 uv 2 ì + =ï ì ï + =ï ï ï Û í í - ï ï + = - = ï ï î ï î . Suy ra u, v là nghiệm (không âm) của 2 21 3m t 4t 0 2 - - + = (*). Hệ có nghiệm Û (*) có 2 nghiệm không âm. / 3m 13 0 0 13 2 S 0 m 7 21 3m 3 0 P 0 2 ì ì - ï ï D ³ ï ï ³ ï ï ï ï ï Û ³ Û Û £ £ í í ï ï - ï ï ³ ³ ï ï ï ï î ï î . Ví dụ 4. Tìm điều kiện m để hệ phương trình 2 2 4 4 10 ( 4)( 4) x y x y xy x y m + + + = + + = có nghiệm thực. GIẢI 2 2 2 2 2 2 (x 4x) (y 4y) 10 x y 4x 4y 10 xy(x 4)(y 4) m (x 4x)(y 4y) m ìì ïï + + + = + + + = ï ï Û í í ï ï + + = + + = ï ï î î . 3 Đặt 2 2 u (x 2) 0,v (y 2) 0= + ³ = + ³ . Hệ phương trình trở thành: u v 10 S 10 uv 4(u v) m 16 P m 24 ì ì + = = ï ï ï ï Û í í ï ï - + = - = + ï ï î î (S = u + v, P = uv). Điều kiện 2 S 4P S 0 24 m 1 P 0 ì ï ³ ï ï ï ³ Û - £ £ í ï ï ³ ï ï î . Loại 3: Một số bài toán giải bằng cách đưa về hệ phương trình. Ví dụ. Giải phương trình: 3 3 3 1 2 x x+ − = . GIẢI Đặt: 3 3 x u 1 x v = − = . Vậy ta có hệ: 3 3 3 u v 2 u v 1 + = + = ⇔ 2 3 u v 2 (u v) (u v) 3uv 1 + = + + − = ⇔ 3 u+v = 2 19 u.v = 36 u, v là hai nghiệm của phương trình: 2 3 19 X - X + = 0 2 36 ⇒ 9+ 5 u = 12 9 - 5 u = 12 ⇒ 3 3 9 + 5 x = 12 9 - 5 x = 12 ÷ ÷ ÷ ÷ Vậy phương trình có hai nghiệm: {x} = 3 3 9 5 9 5 ; 12 12 + − ÷ ÷ ÷ ÷ . B. BÀI TẬP I. Giải các hệ phương trình sau: 1) 4 4 6 6 1 1 x y x y + = + = 2) 2 2 4 2 2 4 5 13 x y x x y y + = − + = 3) 30 35 x y y x x x y y + = + = 4) 2 2 4 2 8 2 x y x y xy + = + + = 5) 2 2 18 ( 1)( 1) 72 x x y y xy x y + + + = + + = 6) ( ) ( ) 2 2 2 2 1 1 5 1 1 49 x y xy x y x y + + = ÷ + + = ÷ 7) 2 2 2 2 1 1 4 1 1 4 x y x y x y x y + + + = + + + = 8) 7 1 78 y x y x x y x xy y xy + = + + = 9) ( ) ( ) 2 2 3 3 4 280 x y x y x y + = + + = 10) 6 6 3 3 2 3 3 x y x x y y + = − = − II. Gải hệ phương trình có tham số: 1. . Tìm giá trị của m: a) ( ) 5 4 4 1 x y xy x y xy m + − = + − = − có nghiệm. 4 b) 2 2 2 1 x y xy m x y xy m + + = + + = + cú nghim duy nht. c) ( ) ( ) 2 2 2 4 2 1 x y x y m + = + = + cú ỳng hai nghim. 2. 2 2 x xy y m x y m + + = + = (1II) a. Gii h phng trỡnh khi m = 5. b. Tỡm cỏc giỏ tr ca m h phng trỡnh ó cho cú nghim. 3. 2 2 3 8 x xy y m x y xy m + + = + = (7I) a Gii h phng trỡnh khi m = 7/2. b. Tỡm cỏc giỏ tr ca m h phng trỡnh ó cho cú nghim. 4. 2 2 1x xy y m x y xy m + + = + + = (40II) a. Gii h phng trỡnh khi m=2. b. Tỡm cỏc giỏ tr ca m h phng trỡnh ó cho cú nghim (x;y) vi x >0, y >0. III. Gii phng trỡnh bng cỏch a v h phng trỡnh: 1. Gii phng trỡnh: 4 4 1 18 3x x + = . 2. Tỡm m mi phng trỡnh sau cú nghim: a. 1 1x x m + + = b. m x m x m + + = c. 3 3 1 1x x m + + = Phn 3 H phng trỡnh i xng loi 1 ba n: (c thờm) a. Định nghĩa: Là hệ ba ẩn với các phơng trình trong hệ là đối xứng. b. Định lý Vi-et cho ph ơng trình bậc 3: Cho 3 số x, y, z có: x + y + z = xy + yz + zx = xyz = Thì x, y, z ;à nghiệm của phơng trình X 3 - X 2 + X - = 0. (*) Thậy vậy: (X - x)(X - y)(X - z) = 0 [ X 2 - (x + y)X + xy ](X - z) = 0 X 3 - X 2 z - X 2 (x + y) + (x + y)zX + xyX - xyz = 0 X 3 - X 2 + X - = 0. (*) có nghiệm là x, y, z phơng trình X 3 - X 2 + X - = 0 có 3 nghiệm là x, y, z. c.Cách giải: + Do các phơng trình trong hệ là đối xứng nên ta luôn viết đợc dới dạng , , Khi đó ta đặt x + y + z = xy + yz + zx = xyz = Ta đợc hệ của , , . + Giải phơng trình X 3 - X 2 + X - = 0 (1) tìm đợc nghiệm (x, y, z) của hệ. Chú ý: (1) có nghiệm duy nhất hệ vô nghiệm. (1)có 1 nghiệm kép duy nhất hệ có nghiệm. (1) có 2 nghiệm : 1 nghiệm kép, 1 nghiệm đơn hệ có 3 nghiệm. (1) có 3 ngiệm hệ có 6 nghiệm. d. Bài tập: 5 VD1: Giải hệ: 2 2 2 3 3 3 x + y + z = 2 x + y + z = 6 x + y + z = 8 Giải: áp dụng hằng đẳng thức ta có: x 2 + y 2 + z 2 = (x + y + z) 2 - 2(xy + yz + zx). x 3 + y 3 + z 3 = (x + y + z) 3 - 3(x + y + z)(xy + yz + zx) + 3xyz. Vậy 6 = 2 2 - 2(xy + yz + zx) xy + yz + zx = -1. 8 = 2 3 - 3.2.(-1) + 3xyz xyz = -2. x, y, z là nghiệm của phơng trình:t 3 - 2t 2 - t + 2 = 0 t = 1 t = - 1 t = 2 Vậy hệ có 6 cặp nghiệm (1;-1;2); (-1;1;2); (1;2;-1); (-1;2;1); (2;1;-1); (2;-1;1). VD2: Giải hệ x + y + z = 9 (1) xy + yz + zx = 27 (2) 1 1 1 + + = 1 (3) x y z Giải: ĐK: x, y, z 0. Từ (3) xy + yz + zx = 1 xyz Do (2) xyz = 27 Vậy hệ x + y + z = 9 xy + yz + zx = 27 xyz = 27 Do đó (x; y; z) là nghiệm của phơng trình: X 3 - 9X 2 + 27X - 27 = 0 (X - 3) 3 = 0 X = 3. Vậy hệ có nghiệm là (3; 3; 3). VD3: Giải hệ 2 2 2 2 3 3 3 3 x + y + z = a x + y + z = a x + y + z = a Giải: x 2 + y 2 + z 2 = (x + y + z) 2 - 2(xy + yz + zx) xy + yz + zx = 0. x 3 + y 3 + z 3 = (x + y + z) 3 - 3(x + y + z)(xy + yz + zx) + 3xyz xyz = 0. Vậy có: x + y + z = 0 xy + yz + zx = 0 0xyz = (x; y; z) là nghiệm của phơng trình: X 3 - aX 2 = 0 X = 0 X = a Vậy hệ có nghiệm là {(a; 0; 0); (0; a; 0); (0; 0; a)} e.Chú ý: Có nhiều vấn đề cần lu ý khi giải hệ loại này + Với cách giải theo định lý Vi-et từ hệ ta phải đa ra đợc x + y + z; xy + yz + zx; xyz có thể nó là hệ quả của hệ nên khi tìm đợc nghiệm nên thử lại. + Vì là hệ đối xứng giữa các ẩn nên trong nghiệm có ít nhất 2 cặp nghiệm có cùng x, cùng y hoặc cùng z nên có thể giải hệ theo phơng trình cộng, thế. 6 VD: x + y + z = 9 (1) xy + yz + zx = 27 (2) 1 1 1 + + = 1 (3) x y z Gi¶i: Râ rµng x = 0, y = 0, z = 0 kh«ng lµ nghiÖm cña hÖ Víi x ≠ 0, y ≠ 0, z ≠ 0, nh©n hai vÕ cña (3) víi xyz ta cã xy + yz + zx = xyz (4). Tõ (2) vµ (4) ⇒ xyz = 27 (5) Tõ (2) ⇒ x 2 (y + z) + xyz = 27x (6) Tõ (1), (5), (6) ta cã: x 2 (9 - x) + 27 - 27x = 0 ⇔ x 3 - 9x 2 + 27x - 27 = 0 ⇔ (x - 3) 3 = 0 ⇔ x = 3 Thay x = 3 vµo (1), (5) ta cã: y + z =6 yz = 9 ⇒ y = z = 3. VËy hÖ cã nghiÖm lµ x = y = z = 3. II. Hệ phương trình đối xứng loại 2: 1. Hệ phương trình đối xứng loại 2 hai ẩn: A. Định ghĩa: ( ) ( ) ( , ) 0 1 ( , ) 0 2 f x y f y x = = Cách giải: Lấy (1) − (2) hoặc (2) − (1) ta được: (x−y)g(x,y)=0. Khi đó x−y=0 hoặc g(x,y)=0. + Trường hợp 1: x−y=0 kết hợp với phương trình (1) hoặc (2) suy ra được nghiệm. + Trường hợp 2: g(x,y)=0 kết hợp với phương trình (1) + (2) suy ra nghiệm (trong trường hợp này hệ phương trình mới trở về hệ đối xứng loại 1) và thông thường vô nghiệm. B. Các ví dụ: Ví dụ 1: Giải hệ phương trình ( ) ( ) 3 3 3 8 1 3 8 2 x x y y y x = + = + (I) GIẢI Lấy (1) − (2) ta được: 2 2 (x - y)(x + xy + y + 5) = 0 Trường hợp 1: (I) 3 x = 3x + 8y x = y ⇔ 3 x = 0 x - 11x = 0 x = ± 11 x = y x = y ⇔ ⇔ . Trường hợp 2: (I) ( ) 2 2 3 3 x +xy+y +5=0 x +y =11 x+y ⇔ (hệ này vô nghiệm) Vậy hệ phương trình đã cho có tập nghiệm: { } { } (x, y) = (0,0); ( 11, 11); (- 11,- 11) Ví dụ 2: Giải hệ phương trình 4 4 1 1 1 1 x y y x + − = + − = GIẢI Đặt: 4 4 x - 1 = u 0; y - 1 = v 0≥ ≥ Hệ phương trình trở thành 4 4 4 4 u + 1 + v = 1 u + v = 0 v + 1 + u = 1 v + u = 0 ⇔ u = 0 v = 0 ⇔ (Do u, v ≥ 0) x = 1 y = 1 ⇒ . Vậy hệ có nghiệm (1,1) 7 Ví dụ 2: Cho hệ phương trình 2 2 x y y m y x x m = − + = − + (I) a. Tìm m để hệ phương trình có nghiệm. b. Tìm m để hệ phương trình có nghiệm duy nhất. Giải (I) 2 2 2 2 2 2 2 2 x = ± y x - y = y - y - x + x x = y - y + m x = y - y + m x = y x = y x = y - y + m x - 2x + m = 0 x = - y x = - y x = y - y + m y + m = 0 ⇔ ⇔ ⇔ ⇔ a) Hệ phương trình có nghiệm ⇔ ' x ' y Δ 0 1 - m 0 m 1 m 0 - m 0 m 0 Δ 0 ≥ ≥ ≤ ⇔ ⇔ ⇔ ≤ ≥ ≤ ≥ b) Hệ phương trình có nghiệm duy nhất ⇔ ' x ' y ' x ' y Δ = 0 Δ < 0 Δ < 0 Δ = 0 ⇔ 1 - m = 0 - m < 0 1 - m < 0 - m = 0 ⇔ m = 1. Vậy m = 1. Ví dụ 3: Giải phương trình: 3 3 1 2 2 1x x+ = − . GIẢI Đặt 3 2x - 1 = t ⇒ 2x - 1 = t 3 . Ta có hệ 3 3 x + 1 = 2t t + 1 = 2x ⇔ 3 2 2 x + 1 = 2t (x - t)(x + xt + t + 1) = 0 ⇔ 3 x - 2x + 1 = 0 x = t ⇔ 2 (x - 1)(x + x - 1) = 0 x = t ⇒ x = 1 - 1 ± 5 x = 2 Vậy phương trình có 3 nghiệm: 1; - 1 ± 5 2 . C. Bài tập: 1.Giải các hệ phương trình sau: a. 1 3 2 1 3 2 x y x y x y + = + = b. 2 2 3 2 3 2 x y x y x y + = + = c. 3 3 1 2 1 2 x y y x + = + = d. 9 9 9 9 x y y x + + = + + = e. 2 2 2 2 x y y x + − = + − = g. 5 2 7 5 2 7 x y y x + + − = + + − = 2. Cho hệ phương trình 2 2 ( ) 2 ( ) 2 x x y m y x y m − + = − + = . a. Giải hệ với m = 0. b. Tìm m để hệ có nghiệm duy nhất. 8 3. Tỡm m h: 3 2 2 3 2 2 7 7 x y x mx y x y my = + = + cú nghim duy nht. 4. Gii cỏc phng trỡnh: a. 2 5 5x x+ + = . b. 3 3 3 3 2 2x x + = . 2. Hệ ph ơng trình đối xứng loại 2, 3 ẩn: (Đọc thêm) A. Dùng chủ yếu là phơng pháp biến đổi tơng đơng bằng phép cộng và thế. Ngoài ra sử dụng sự đặc biệt trong hệ bằng cách đánh giá nghiệm, hàm số để giải. B. Ví dụ: Giải hệ 2 2 2 x + 2yz = x (1) y + 2zx = y (2) z + 2xy = z (3) Giả bằng cách cộng (1), (2), (3) và lấy (1) trừ đi (2) ta có hệ đã cho tơng đơng với hệ 2 2 x + 2yz = x (x + y + z) = x + y + z (x - y)(x + y - 2z - 1) = 0 Hệ này đơng tơng với 4 hệ sau: 2 2 x + 2yz = x x + 2yz = x x + y + z = 0 (I) x + y + z = 0 (II) x =y x + y - 2z - 1 = 0 2 2 x + 2yz = x x + 2yz = x x + y + z = 1 (III) x + y + z = 1 (IV) x =y x + y - 2z - 1 = 0 Giải (I): (I) 2 x + 2yz = x 2y + z = 0 x = y 2 x + 2yz = x z = - 2x x = y 2 2 x - 4x = x z = - 2x x = y -1 x = 0 x = 3 z = - 2x x = y Vậy (I) có 2 nghiệm (0;0;0); ( -1 -1 2 ; ; 3 3 3 ) Làm tơng tự (II) có nghiệm ( 2 -1 -1 ; ; 3 3 3 );( -1 2 -1 ; ; 3 3 3 ) Hệ (III) có nghiệm (0;0;1); ( 1 1 1 ; ; 3 3 3 ) Hệ (IV) có nghiệm (0;1;0); (1;0;0). Vậy hệ đã cho có 8 nghiệm kể trên. VD2: Giải hệ phơng trình: 2 2 2 2 2 2 x + y + z = 1 x + y + z = 1 x + y + z = 1 Giải: Hệ 2 2 x + y + z = 1 (y - z)(y + z - 1) = 0 (x - z)(x + z - 1) = 0 9 2 2 2 2 2 2 2 2 x + y + z = 1 x + y + z = 1 y=z (I) y = z (II) x=z x + z - 1 = 0 x + y + z = 1 x + y + z = 1 z + y - 1 = 0 (III) z + y - x = z 1 = 0 (IV) x + z - 1 = 0 Giải các hệ bằng phơng pháp thế đợc 5 nghiệm (-1;-1;-1); (0;0;1); (0;1;0); (0;0;1); 1 1 1 ; ; 2 2 2 ữ . VD4: Giải hệ: 2 2 2 1 1 1 x y y z z x = + = + = + Giải: Xét hai trờng hợp sau: TH1: Trong 3 số ít nhất có 2 nghiệm số bằng nhau: Giả sử x=y có hệ 2 2 2 1 1 1 x x y z z x = + = + = + Từ đó có nghiệm của hệ (x;y;z) là : 1 5 1 5 1 5 1 5 1 5 1 5 ; ; ; ; ; 2 2 2 2 2 2 + + + ữ ữ ữ ữ Tơng tự y=z, z=x ta cũng đợc nghiệm nh trên. TH2 : 3 số x, y, z đôi một khác nhau . Giả sử x>y>z ,xét hàm số f(t) = t 2 trên D = [ ) 1; + a) z 0 , x>y>z 0 f(x)>f(y)>f(z)y+1>z+1>x+1y>x>z(vô lý). b) z<y<x 0 f(x)<f(y)<f(z)y+1<z+1<x+1y<z<x(vô lý). c) x>0>z>-1 f(-1)>f(z) 1>x+1x<0 (vô lý) Vậy điều giả sử là sai. TH2 vô nghiệm. VD5: 2 2 2 2 2 2 x x y y y y z z z z x x + = + = + = (Vô địch Đức) Giải: TH1: Trong x, y, z ít nhất có 2 nghiệm số bằng nhau Giả sử x = y ta có hệ 3 2 2 2 0 (1) 2 0 (2) 2 0 (3) x x x x z x z z x z x + = + = + = Từ (1) x = 0, x = -1. x = 0. Thay vào (2), (3) z=0. x = -1. Thay vào (2), (3) vô lý Vậy hệ có nghiệm (0,0,0) Nếu y = z hay x = z cũng chỉ có nghiệm (0,0,0). TH2: 3 số đôi 1 khác nhau. Từ 2x + x 2 y = y thấy nếu x 2 = 1 2 = 0 (vô lý) 10 [...]... 2y Hai phơng trình còn lại tơng tự ta có hệ phơng trình tơng đơng với: z = 2 1 y 2z x = 1 z2 Giả sử x > y > z (*) Xét hàm số: 2t f(t) = xác định trên D = R\ {1} 1 t2 2(t 2 + 1) f(t) = > 0 với mọi tD (1 t 2 ) 2 hàm số đồng biến trên D f(x) > f(y) > f(z) y > z > x mâu thuẫn với (*) Vậy điều giả sử sai Do vai trò x, y, z nh nhau Vậy TH2 - hệ vô nghiệm Vậy hệ đã cho có nghiệm duy nhất là (0; 0; 0)... (0; 0; 0) C Bài tập x = y3 + y 2 + y 2 1 y = z 3 + z 2 + z 2 z = x3 + x 2 + x 2 2 2 3 3(3 x 2 4) 2 4 4 = x y = 3x 2 4 Hớng dẫn: Đặt 2 z = 3y 4 x = 3z 2 4 y = 3x 2 4 Đa về giải hệ z = 3 y 2 4 x = 3z 2 4 xyz = x + y + z yzt = y + z + t 3 ztx = z + t + x txy = t + x + y y 3 9 x 2 + 27 x 27 = 0 4 z 3 9 y 2 + 27 y 27 = 0 3 2 x 9 z + 27 z 27 = 0 2 x2 =y 2 . Chuyên đề: HỆ PHƯƠNG TRÌNH ĐẠI SỐ NHỮNG NỘI DUNG CƠ BẢN I. Hệ phương trình đối xứng loại 1: Phần 1- Định nghĩa chung: Dựa vào. y, z) của hệ. Chú ý: (1) có nghiệm duy nhất hệ vô nghiệm. (1)có 1 nghiệm kép duy nhất hệ có nghiệm. (1) có 2 nghiệm : 1 nghiệm kép, 1 nghiệm đơn hệ có 3 nghiệm. (1) có 3 ngiệm hệ có 6 nghiệm. d = 0 X = 0 X = a Vậy hệ có nghiệm là {(a; 0; 0); (0; a; 0); (0; 0; a)} e.Chú ý: Có nhiều vấn đề cần lu ý khi giải hệ loại này + Với cách giải theo định lý Vi-et từ hệ ta phải đa ra đợc x +