1. Trang chủ
  2. » Giáo án - Bài giảng

Đề+Đáp án tuyển sinh lớp_10_THPT_môn_TOÁN_năm_2010(Quảng Trị)

4 231 1

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 4
Dung lượng 147 KB

Nội dung

SỞ GIÁO DỤC ĐÀO TẠO ĐỀ TUYỂN SINH LỚP 10 THPT QUẢNG TRỊ Khóa ngày 24 tháng 6 năm 2010 MÔN TOÁN ĐỀ CHÍNH THỨC Thời gian : 120 phút (không kể thời gian giao đề) Câu 1 (1.5 điểm) Rút gọn biểu thức (Không dùng máy tính cầm tay): 1) 8 18 2 2+ − 2) 2 1 : ( ) a b ab a b a b + − − + với 0, 0,a b a b> > ≠ Câu 2(2.0 điểm) 1) Giải phương trình (Không dùng máy tính cầm tay): x 2 – 3x + 2 = 0 2) Giải hệ phương trình (Không dùng máy tính cầm tay): 3 3 4 2 x y x y − =   − =  . Câu 3 (2.0 điểm) Trên mặt phẳng tọa độ Oxy cho hàm số y = -x + 4 có đồ thị là đường thẳng (d). Gọi A, B lần lượt là giao điểm của (d) với trục tung và trục hoành. a) Tìm tọa độ các điểm A và B. b) Hai điểm A, B và gốc tọa độ O tạo thành tam giác vuông AOB. Quay tam giác vuông AOB một vòng quanh cạnh góc vuông OA cố định ta được một hình gì? Tính diện tích xung quanh hình đó. Câu 4 (1.5 điểm) Một xe ôtô tải và một xe du lịch khởi hành đồng thời từ thành phố A đến thành phố B. Xe du lịch có vận tốc lớn hơn vận tốc ôtô tải là 20km/h, do đó nó đến B trước xe ôtô tải 15 phút. Tính vận tốc mỗi xe, biết rằng khoảng cách giữa hai thành phố A và B là 100km. Câu 5 (3.0 điểm) Cho tam giác ABC vuông tại A, Kẻ đường cao AH và phân giác BE của góc ABC (H thuộc BC, E thuộc AC), Kẻ AD vuông góc với BE (D thuộc BE). a) Chứng minh rằng tứ giác ADHB là tứ giác nội tiếp, xác định tâm O đường tròn ngoại tiếp tứ giác ADHB (gọi là đường tròn (O)). b) Chứng minh · · EA D HBD= và OD song song với HB. c) Cho biết số đo góc · 0 60A B C = và AB = a (a > 0 cho trước). Tính theo a diện tích phần tam giác ABC nằm ngoài đường tron (O). HẾT Họ và tên:……………………………. Phòng thi:………………SBD………. ĐÁP ÁN ĐỀ TUYỂN SINH LỚP 10 THPT Khóa ngày 24 tháng 6 năm 2010 MÔN TOÁN Câu Lời giải Điểm 1 (1.5điểm) Rút gọn các biểu thức: 1) 8 18 2 2 4.2 9.2 2 2 2 2 3 2 2 2 3 2 + − = + − = + − = 2) Với 0, 0,a b a b> > ≠ Ta có: 2 2 1 ( ) : ( ) ( ) ( )( ) a b ab a b a b a b a b a b a b a b a b + − − = + − + − = − + = − 0.25đ 0.5đ 0,25đ 0,25đ 0,25đ 2 (2.0điểm) 1)Giải phương trình: x 2 – 3x + 2 = 0 A = 1, b =-3, c = 2 và a + b + c = 0 Nên phương trình có hai nghiệm: 1 2 1, 2 c x x a = = = 2) Giải hệ ( ) 3 (1) 3 4 2 2 x y x y − =    − =   (1) ⇔ x = 3 + y (3). Thay (3) vào phương trình (2) ta được: 3(3 + y) - 4y = 2 ⇔ y = 7 (4). Thay (4) vào (3) ta được: x = 10. Vậy hệ có nghiệm (x; y) = (10; 7) 0.5đ 0,25 0,25 0,25 0,25 3 (2.0điểm) a) *Giao điểm đồ thị với trục tung: x = 0 => y = 4. Toạ độ điểm A(0; 4) *Giao điểm đồ thị với trục hoành: y = 0 => x = 4. Toạ độ điểm B(4; 0) b) Quay tam giác vuông AOB một vòng quanh cạnh OA ta được một hình nón. Hình nón có bán kính đáy r = OB = 4, đường sinh AB = l = 4 2 (Do tam giác AOB cân tại O có OA = OB =4) Diện tích xung quanh hình nón là: S xq = 4.4 2 16 2rl π π π = = (đvdt) 0.5 0.5 0.5 0.25 0.25 4 (1.5điểm) Gọi vận tốc Ôtô tải là x (km/h), x > 0 thì vận tốc xe du lịch là x + 20 (km/h) Thời gian ôtô tải đi từ thành phố A đến thành phố B là 100 x Thời gian xe du lịch tải đi từ thành phố A đến thành phố B là 100 20x + Vì xe du lịch đến B trước ôtô tải 25 phút = 5 12 h nên ta có phương 0.25 0.25 0.25 trình: 2 100 100 5 20 4800 0 (1) 20 12 x x x x − = ⇔ + − = + Giải (1) ta được nghiệm x 1 = 60; x 2 = -80 (loại). Vậy vận tốc của ôtô tải là 60km/h, xe du lịch là 80km/h 0.25 0.25 0.25 5 (3điểm) 2 1 E O D H C B A a) Chứng minh tứ giác ADHB nội tiếp: Ta có: · 0 90 ( )ADB AD BE= ⊥ · 0 90AHB = (AH là đường cao của tam giác ABC) Suy ra · · 0 90ADB AHB= =  Tứ giác ADHB nội tiếp được đường tròn đường kính AB. Tâm O đường tròn là trung điểm của AB. b) * Chứng minh · · EAD HBD= Do AC ⊥ AB tại A, AB là đường kính của (O). Nên AC là tiếp tuyến của đường tròn (O) · · » 1 ( ) (1) 2 EAD ABD sd AD⇒ = = Mà · · (2)ABD HBD= (BD là phân giác của góc ABC) Từ (1) và (2) ta được · · EAD HBD= * Chứng minh OD//HB: Ta có OD = OB (= bán kính đường tròn (O)) Nên tam giác OBD cân tại O => · · (3)OBD ODB= Ta có · · OBD HBD= (BD là phân giác của góc ABC) (4) Từ (3) và (4) suy ra: · · / /ODB HBD OD HB= ⇒ c) Tính theo a diện tích phần tam giác ABC nằm ngoài đường tròn (O). Ta có: · 0 60 ( )ABC gt= ⇒ sđ · 0 120AOH = *Diện tích quạt(OAH) là: 0.5 0.5 0.25 0.25 0.25 0.25 2 0 2 1 0 .120 2 360 12 a a S π π    ÷   = = (đvdt) * Diện tích tam giac OBH là: 2 2 2 . 3 3 2 4 16 a a S    ÷   = = (đvdt) Tam giác ABC vuông tại A: AC = AB tan60 0 = 3a * Diện tích tam giác ABC là: 2 3 . . 3 3 2 2 2 AB AC a a a S = = = (đvdt) * Diện tích cần tìm là: ( ) 2 2 2 3 2 1 2 3 3 2 16 12 21 3 4 48 a a a S S S S a π π = − − = − − − = (đvdt) Hết Lưu ý:Đáp án chỉ gợi ý một cách giải, thí sinh giải đúng vẫn đạt điểm tối đa theo câu đó. Điểm toàn bài cho lẽ đến 0,25 điểm - không làm tròn. 0.25 0.25 0.25 0.25 . tron (O). HẾT Họ và tên:……………………………. Phòng thi:………………SBD………. ĐÁP ÁN ĐỀ TUYỂN SINH LỚP 10 THPT Khóa ngày 24 tháng 6 năm 2 010 MÔN TOÁN Câu Lời giải Điểm 1 (1.5điểm) Rút gọn các biểu thức: 1) 8. SỞ GIÁO DỤC ĐÀO TẠO ĐỀ TUYỂN SINH LỚP 10 THPT QUẢNG TRỊ Khóa ngày 24 tháng 6 năm 2 010 MÔN TOÁN ĐỀ CHÍNH THỨC Thời gian : 120 phút (không kể thời gian. phố B là 100 x Thời gian xe du lịch tải đi từ thành phố A đến thành phố B là 100 20x + Vì xe du lịch đến B trước ôtô tải 25 phút = 5 12 h nên ta có phương 0.25 0.25 0.25 trình: 2 100 100 5 20

Ngày đăng: 12/07/2014, 23:00

TỪ KHÓA LIÊN QUAN

w