1) (A07) 3 1 3 2log (4 3) log (2 3) 2x x + + ( 3 3 4 x< ) 2) (D305) 2 2 4 2 3 log log ( 4 4) log 3 2 x x x x + + + + > (x>2 4x < ) 3) (D206) 2 4 2 1 2(log 1) log log 0 4 x x+ + = ( x=2 x= ẳ) 4) (B203) 0,5 0,25 2 log 2 log ( 1) log 6 0x x + + (x 3) 5) 2 4 1 2 log 2 log 5 log 8 0x x- + + + = 3 17 6;3; 2 x ổ ử ỡ ỹ ù ù - ữ ỗ ù ù ữ ỗ ẻ - ớ ý ữ ỗ ữ ù ù ỗ ữ ỗ ố ứ ù ù ợ ỵ 6) 2 2 4 1 2 log ( 2) log ( 5) log 8 0x x+ + - + = 3 17 6; 2 x x ổ ử ữ ỗ ữ ỗ = = ữ ỗ ữ ữ ỗ ố ứ 7) 8 4 2 2 1 1 log ( 3) log ( 1) log (4 ) 2 4 x x x+ + = (x = 3 x= 3+ 12 ) 8) 2 9 1 3 3 log ( 3) log 2 log 2 1x x+ - - - < ( 4; 3) ( 3; 1) (0;2) (2;3)- - ẩ - - ẩ ẩ 9) 3 3 log 1 log 1 2 .5 400 x x + + < ( -10 < x < 8 ) 10) (B104) 1 2 4 16 4 2 x x x + > (x<2 x> 4) 11) (A104) 2 2 4 log [log ( 2 )] 0x x x + < (x >1 x< - 4) 12) (B204) 3 log log 3 x x > ( x>3 1/3 <x <1) 13) (D03) 2 2 2 2 2 3 x x x x + = (x =1 x=2) 14) (D2.05) 3 3 1 .29 2 2 2 2 xx xx ( 1 2 1 2x + ) 15) (B206) 2 2 1 2 9 10.3 1 0 x x x x+ + + = ( x=1 x= 2) 16) (A.06) 3.8 x +4.12 x 18 x 2.27 x =0 (x=1) 17) (D06) 2 2 2 2 4.2 2 4 0 x x x x x+ + = ( x=0 x=1) 18) (CHQ 05) 1 2 1 2 3 2 12 0 x x x+ + < (x >0) 19) (B07) ( ) ( ) 2 1 2 1 2 2 0 x x + + = (x = 1) 20) (D203) 5 log (5 4) 1 x x = (x =1) 21) (B06) 2 5 5 5 log (4 144) 4 log 2 1 log (2 1) x x + < + + (2<x<4) 22) (B02) 3 log (log (9 72)) 1 x x ( 9 log 73 2x< ) 23) (D07) ( ) 2 2 1 log 4 15.2 27 2log 0 4.2 3 x x x + + + = 2 ( log 3)x = 24) (D106)4 x 2 x+1 +2(2 x 1)sin(2 x +y 1) +2 =0 (x =1, y = 2 p 1 +k2) 25) (D106) 1 3 3 log (3 1) log (3 3) 6 x x + = ( x= 3 log 10 x= 3 28 log 27 ) 26) (D102) 16 3 2 3 27 log 3log 0 x x x x = (x=1) 27) (A102) 2 1 1 0,5 2 log (4 4) log (2 3.2 ) x x x+ + ( x 2) 28) (A204)2 2 2 1 3 log log 2 2 2 x x x (0 < x 2 x4) 29) (A203) 1 1 15.2 1 2 1 2 x x x+ + + + (x 2) 30) (D103) f(x)= log 2. x x . Gii bpt f (x)0 (0 < x e x 1) 31) (B3-03) 3 2 3 2 x x x+ = + ( x=0 x=1) 32) 2 2 2 log 9 log log 3 2 3 x x x x = (x = 2 ) 33) 5 5 log 3 log 4 x x x+ = (x=25) 34) 2 2 2 3 log ( 5 5 1) log ( 5 7) 2x x x x + + + + ( 5 5 5 5 1 4 2 2 x x + ) 35) (A-08) 2 2 2x-1 x 1 log (2x x 1) log (2x-1) 4 + + - + = 5 x 2;x 4 = = 36) (B-08) ổ ử + ữ ỗ < ữ ỗ ữ ỗ ố ứ + 2 0,7 6 log log 0 4 x x x - - ẩ +Ơ( 4; 3) (8; ) 37) (D-08) - + 2 1 2 3 2 log 0 x x x ) ( ộ ự - ẩ + ờ ỳ ở ỷ 2 2;1 2;2 2 38) (A1-08) + + 1 2 3 2 3 log (log ) 0 1 x x x < 1 39) (A1-08) sin( ) 4 tan p - = x e x x= /4 + k 40) (A2-08) + = - 3 1 6 3 log (9 ) log x x x x x = 2 41) (B1-08) + + - = 2 1 2 2log (2 2) log (9 1) 1x x x= 1; x = 3 2 42) (B2-08) 2 1 2 1 3 2 5.6 0 + + - - Ê x x x 2 3 1 log 2 Êx 43) (D1-08) 2 2 2 4 2 2 1 2 16.2 2 0 - - - - - - Ê x x x x 1 3 1 3- Ê Ê +x 44) (D1-07) - + + - 2 2 1 2 2 1 1 log 2 3 1 log ( 1) 2 2 x x x Ê < 1 1 3 2 x 45) (D2-07) 2 2 1 log 1 2 - = + - x x x x x= 1 46) (D2-07) 3 1 2 2 7.2 7.2 2 0 + - + - = x x x x= 0; 1 47) (A1-07) + 2 4 2 (log 8 log )log 2 0 x x x 1 0 1 2 < Ê >x x 48) (A2-07) + - + = + + 4 2 2 1 1 1 log ( 1) log 2 log 4 2 x x x x = 5 2 49) (B1-07) - + - = 2 3 3 log ( 1) log (2 1) 2x x x=2 50) (B2-07) + - = - 3 9 3 4 (2 log )log 3 1 1 log x x x x= 1 3 ; x= 81 . 2 x4) 29) (A203) 1 1 15.2 1 2 1 2 x x x+ + + + (x 2) 30) (D103) f(x)= log 2. x x . Gii bpt f (x)0 (0 < x e x 1) 31) (B3-03) 3 2 3 2 x x x+ = + ( x=0 x=1) 32) 2 2 2 log 9 log