1. Trang chủ
  2. » Giáo án - Bài giảng

4 dang co ban vao lop 10

154 310 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 154
Dung lượng 4,48 MB

Nội dung

Trng THCS ng - Tng - Thanh Chng- Ngh An ôn tập vào lớp 10 năm học 2009-2010 Phần 1: Các loại bài tập về biểu thức Bài 1: Cho biểu thức : + + + + = 6 5 3 2 aaa a P a2 1 a) Rút gọn P b) Tìm giá trị của a để P<1 Bài 2: Cho biểu thức: P= + + + + + + + 65 2 3 2 2 3 : 1 1 xx x x x x x x x a) Rút gọn P b)Tìm giá trị của a để P<0 Bài 3: Cho biểu thức: P= + + + 13 23 1: 19 8 13 1 13 1 x x x x xx x a) Rút gọn P b) Tìm các giá trị của x để P= 5 6 Bài 4: Cho biểu thức P= + + + 1 2 1 1 : 1 1 aaaa a a a a a) Rút gọn P b) Tìm giá trị của a để P<1 c) Tìm giá trị của P nếu 3819 =a Bài 5: Cho biểu thức: P= + + + + a a a a a a a aa 1 1 . 1 1 : 1 )1( 332 a) Rút gọn P b) Xét dấu của biểu thức M=a.(P- 2 1 ) Bài 6: Cho biểu thức: P = + + + + + + + + 12 2 12 1 1:1 12 2 12 1 x xx x x x xx x x a) Rút gọn P b) Tính giá trị của P khi x ( ) 223. 2 1 += Bài 7: Cho biểu thức: P= + + + 1 1: 1 1 1 2 x x xxxxx x a) Rút gọn P b) Tìm x để P 0 1 Trng THCS ng - Tng - Thanh Chng- Ngh An Bài 8: Cho biểu thức: P= + + ++ + a a a aa a a a 1 1 . 1 12 3 3 a) Rút gọn P b) Xét dấu của biểu thức P. a1 Bài 9: Cho biểu thức P= . 1 1 1 1 1 2 :1 + ++ + + + x x xx x xx x a) Rút gọn P b) So sánh P với 3 Bài 10: Cho biểu thức : P= + + + a a aa a a aa 1 1 . 1 1 a) Rút gọn P b) Tìm a để P< 347 Bài 11: Cho biểu thức: P= + + + 1 3 22 : 9 33 33 2 x x x x x x x x a) Rút gọn P b) Tìm x để P< 2 1 c) Tìm giá trị nhỏ nhất của P Bài 12: Cho biểu thức: P= + + 3 2 2 3 6 9 :1 9 3 x x x x xx x x xx a) Rút gọn P b) Tìm giá trị của x để P<1 Bài 13: Cho biểu thức : P= 3 32 1 23 32 1115 + + + + x x x x xx x a) Rút gọn P b) Tìm các giá trị của x để P= 2 1 c) Chứng minh P 3 2 Bài 14: Cho biểu thức: P= 2 2 44 2 mx m mx x mx x + + với m>0 a) Rút gọn P b) Tính x theo m để P=0. c) Xác định các giá trị của m để x tìm đợc ở câu b thoả mãn điều kiện x>1 Bài 15: Cho biểu thức P= 1 2 1 2 + + + + a aa aa aa a) Rút gọn P b) Biết a>1 Hãy so sánh P với P c) Tìm a để P=2 d) Tìm giá trị nhỏ nhất của P Bài 16: Cho biểu thức P= + + + + + + + + 1 11 1 :1 11 1 ab aab ab a ab aab ab a 2 Trng THCS ng - Tng - Thanh Chng- Ngh An a) Rút gọn P b) Tính giá trị của P nếu a= 32 và b= 31 13 + c) Tìm giá trị nhỏ nhất của P nếu 4=+ ba Bài 17: Cho biểu thức : P= + + + + + + 1 1 1 1111 a a a a a a aa aa aa aa a) Rút gọn P b) Với giá trị nào của a thì P=7 c) Với giá trị nào của a thì P>6 Bài 18: Cho biểu thức: P= + + 1 1 1 1 2 1 2 2 a a a a a a a) Rút gọn P b) Tìm các giá trị của a để P<0 c) Tìm các giá trị của a để P=-2 Bài 19: Cho biểu thức P= ( ) ab abba ba abba + + . 4 2 a) Tìm điều kiện để P có nghĩa. b) Rút gọn P c) Tính giá trị của P khi a= 32 và b= 3 Bài 20: Cho biểu thức : P= 2 1 : 1 1 11 2 + ++ + + x xxx x xx x a) Rút gọn P b) Chứng minh rằng P>0 x 1 Bài 21: Cho biểu thức : P= ++ + + 1 2 1: 1 1 1 2 xx x xxx xx a) Rút gọn P b) Tính P khi x= 325 + Bài 22: Cho biểu thức P= xx x x x 24 1 : 24 2 4 2 3 2 1 :1 + + a) Rút gọn P b) Tìm giá trị của x để P=20 Bài 23: Cho biểu thức : P= ( ) yx xyyx xy yx yx yx + + + 2 33 : a) Rút gọn P b) Chứng minh P 0 Bài 24: Cho biểu thức P= ++ + + + baba ba bbaa ab babbaa ab ba : 31 . 31 a) Rút gọn P b) Tính P khi a=16 và b=4 3 Trng THCS ng - Tng - Thanh Chng- Ngh An Bài 25: Cho biểu thức: P= 12 . 1 2 1 12 1 + + + a aa aa aaaa a aa a) Rút gọn P b) Cho P= 61 6 + tìm giá trị của a c) Chứng minh rằng P> 3 2 Bài 26: Cho biểu thức: P= + + + + 3 5 5 3 152 25 :1 25 5 x x x x xx x x xx a) Rút gọn P b) Với giá trị nào của x thì P<1 Bài 27: Cho biểu thức P= ( ) ( ) baba baa babbaa a baba a 222 .1 : 133 ++ + ++ a) Rút gọn P b) Tìm những giá trị nguyên của a để P có giá trị nguyên Bài 28: Cho biểu thức P= + + 1 2 2 1 : 1 1 1 a a a a aa a) Rút gọn P b) Tìm giá trị của a để P> 6 1 Bài 29: Cho biểu thức: P= 33 33 : 112 . 11 xyyx yyxxyx yx yxyx + +++ ++ + + a) Rút gọn P b) Cho x.y=16. Xác định x,y để P có giá trị nhỏ nhất Bài 30: Cho biểu thức : P= x x yxyxx x yxy x + 1 1 . 22 2 2 3 a) Rút gọn P b) Tìm tất cả các số nguyên dơng x để y=625 và P<0,2 Bài tập rút gọn Bài 31 : 1) Đơn giản biểu thức : P = 14 6 5 14 6 5+ + . 2) Cho biểu thức : Q = x 2 x 2 x 1 . x 1 x 2 x 1 x + + ữ ữ + + a) Rút gọn biểu thức Q. b) Tìm x để Q > - Q. c) Tìm số nguyên x để Q có giá trị nguyên. 4 Trng THCS ng - Tng - Thanh Chng- Ngh An H ớng dẫn : 1. P = 6 2. a) ĐKXĐ : x > 0 ; x 1. Biểu thức rút gọn : Q = 1 2 x . b) Q > - Q x > 1. c) x = { } 3;2 thì Q Z Bài 32 : Cho biểu thức P = 1 x x 1 x x + + a) Rút gọn biểu thức sau P. b) Tính giá trị của biểu thức P khi x = 1 2 . H ớng dẫn : a) ĐKXĐ : x > 0 ; x 1. Biểu thức rút gọn : P = x x + 1 1 . b) Với x = 1 2 thì P = - 3 2 2 . Bài 33 : Cho biểu thức : A = 1 1 1 1 + + x x x xx a) Rút gọn biểu thức sau A. b) Tính giá trị của biểu thức A khi x = 4 1 c) Tìm x để A < 0. d) Tìm x để A = A. H ớng dẫn : a) ĐKXĐ : x 0, x 1. Biểu thức rút gọn : A = 1x x . b) Với x = 4 1 thì A = - 1. c) Với 0 x < 1 thì A < 0. d) Với x > 1 thì A = A. Bài 34 : Cho biểu thức : A = 1 1 3 1 a 3 a 3 a + ữ ữ + a) Rút gọn biểu thức sau A. b) Xác định a để biểu thức A > 2 1 . H ớng dẫn : a) ĐKXĐ : a > 0 và a 9. Biểu thức rút gọn : A = 3 2 +a . b) Với 0 < a < 1 thì biểu thức A > 2 1 . 5 Trng THCS ng - Tng - Thanh Chng- Ngh An Bài 35 : Cho biểu thức: A = 2 2 x 1 x 1 x 4x 1 x 2003 . x 1 x 1 x 1 x + + + ữ + . 1) Tìm điều kiện đối với x để biểu thức có nghĩa. 2) Rút gọn A. 3) Với x Z ? để A Z ? H ớng dẫn : a) ĐKXĐ : x 0 ; x 1. b) Biểu thức rút gọn : A = x x 2003+ với x 0 ; x 1. c) x = - 2003 ; 2003 thì A Z . Bài 36 : Cho biểu thức: A = ( ) 2 x 2 x 1 x x 1 x x 1 : x 1 x x x x + + ữ ữ + . a) Rút gọn A. b) Tìm x để A < 0. c) Tìm x nguyên để A có giá trị nguyên. H ớng dẫn : a) ĐKXĐ : x > 0 ; x 1. Biểu thức rút gọn : A = 1 1 + x x . b) Với 0 < x < 1 thì A < 0. c) x = { } 9;4 thì A Z. Bài 37 : Cho biểu thức: A = x 2 x 1 x 1 : 2 x x 1 x x 1 1 x + + + ữ ữ + + a) Rút gọn biểu thức A. b) Chứng minh rằng: 0 < A < 2. H ớng dẫn : a) ĐKXĐ : x > 0 ; x 1. Biểu thức rút gọn : A = 1 2 ++ xx b) Ta xét hai trờng hợp : +) A > 0 1 2 ++ xx > 0 luôn đúng với x > 0 ; x 1 (1) +) A < 2 1 2 ++ xx < 2 2( 1++ xx ) > 2 xx + > 0 đúng vì theo gt thì x > 0. (2) Từ (1) và (2) suy ra 0 < A < 2(đpcm). Bài 38 : Cho biểu thức: P = a 3 a 1 4 a 4 4 a a 2 a 2 + + + (a 0; a 4) a) Rút gọn P. b) Tính giá trị của P với a = 9. 6 Trng THCS ng - Tng - Thanh Chng- Ngh An H ớng dẫn : a) ĐKXĐ : a 0, a 4. Biểu thức rút gọn : P = 2 4 a b) Ta thấy a = 9 ĐKXĐ . Suy ra P = 4 Bài 39 : Cho biểu thức: N = a a a a 1 1 a 1 a 1 + + ữ ữ ữ ữ + 1) Rút gọn biểu thức N. 2) Tìm giá trị của a để N = -2004. H ớng dẫn : a) ĐKXĐ : a 0, a 1. Biểu thức rút gọn : N = 1 a . b) Ta thấy a = - 2004 ĐKXĐ . Suy ra N = 2005. Bài 40 : Cho biểu thức 3x 3x 1x x2 3x2x 19x26xx P + + + + = a. Rút gọn P. b. Tính giá trị của P khi 347x = c. Với giá trị nào của x thì P đạt giá trị nhỏ nhất và tính giá trị nhỏ nhất đó. H ớng dẫn : a ) ĐKXĐ : x 0, x 1. Biểu thức rút gọn : 3x 16x P + + = b) Ta thấy 347x = ĐKXĐ . Suy ra 22 33103 P + = c) P min =4 khi x=4. Bài 41 : Cho biểu thức + + + + = 1 3 22 : 9 33 33 2 x x x x x x x x P a. Rút gọn P. b. Tìm x để 2 1 P < c. Tìm giá trị nhỏ nhất của P. H ớng dẫn : a. ) ĐKXĐ : x 0, x 9. Biểu thức rút gọn : 3x 3 P + = b. Với 9x0 < thì 2 1 P < c. P min = -1 khi x = 0 Bài 42: Cho A= 1 1 1 4 . 1 1 a a a a a a a + + + ữ ữ ữ + với x>0 ,x 1 a. Rút gọn A 7 Trường THCS Đồng - Tường - Thanh Chương- Nghệ An b. TÝnh A víi a = ( ) ( ) ( ) 4 15 . 10 6 . 4 15+ − − ( KQ : A= 4a ) Bµi 43: Cho A= 3 9 3 2 1 : 9 6 2 3 x x x x x x x x x x     − − − − − + −  ÷  ÷  ÷  ÷ − + − − +     víi x ≥ 0 , x ≠ 9, x ≠ 4 . a. Rót gän A. b. x= ? Th× A < 1. c. T×m x Z∈ ®Ó A Z∈ (KQ : A= 3 2x − ) Bµi 44: Cho A = 15 11 3 2 2 3 2 3 1 3 x x x x x x x − − + + − + − − + víi x ≥ 0 , x ≠ 1. a. Rót gän A. b. T×m GTLN cña A. c. T×m x ®Ó A = 1 2 d. CMR : A 2 3 ≤ . (KQ: A = 2 5 3 x x − + ) Bµi 45: Cho A = 2 1 1 1 1 1 x x x x x x x + + + + − + + − víi x ≥ 0 , x ≠ 1. a . Rót gän A. b. T×m GTLN cña A . ( KQ : A = 1 x x x+ + ) Bµi 46: Cho A = 1 3 2 1 1 1x x x x x − + + + − + víi x ≥ 0 , x ≠ 1. a . Rót gän A. b. CMR : 0 1A≤ ≤ ( KQ : A = 1 x x x− + ) Bµi 47: Cho A = 5 25 3 5 1 : 25 2 15 5 3 x x x x x x x x x x     − − + − − − +  ÷  ÷  ÷  ÷ − + − + −     a. Rót gän A. b. T×m x Z∈ ®Ó A Z∈ ( KQ : A = 5 3x + ) Bµi 48: Cho A = 2 9 3 2 1 5 6 2 3 a a a a a a a − + + − − − + − − víi a ≥ 0 , a ≠ 9 , a ≠ 4. a. Rót gän A. b. T×m a ®Ó A < 1 8 Trường THCS Đồng - Tường - Thanh Chương- Nghệ An c. T×m a Z ∈ ®Ó A Z∈ ( KQ : A = 1 3 a a + − ) Bµi 49: Cho A= 7 1 2 2 2 : 4 4 2 2 2 x x x x x x x x x x     − + + − + − −  ÷  ÷  ÷  ÷ − − − − +     víi x > 0 , x ≠ 4. a. Rót gän A. b. So s¸nh A víi 1 A ( KQ : A = 9 6 x x + ) Bµi50: Cho A = ( ) 2 3 3 : x y xy x y x y y x x y x y   − + − −  ÷ +  ÷ − − +   víi x ≥ 0 , y ≥ 0, x y≠ a. Rót gän A. b. CMR : A ≥ 0 ( KQ : A = xy x xy y− + ) Bµi 51 : Cho A = 1 1 1 1 1 . 1 1 x x x x x x x x x x x x x x   − + + −   − + − +  ÷  ÷  ÷ − + − +     Víi x > 0 , x ≠ 1. a. Rót gän A. b. T×m x ®Ó A = 6 ( KQ : A = ( ) 2 1x x x + + ) Bµi 52 : Cho A = ( ) 4 3 2 : 2 2 2 x x x x x x x x     − +  ÷ + −  ÷  ÷  ÷ − − −     víi x > 0 , x ≠ 4. a. Rót gän A b. TÝnh A víi x = 6 2 5− (KQ: A = 1 x− ) Bµi 53 : Cho A= 1 1 1 1 1 : 1 1 1 1 2x x x x x     + − +  ÷  ÷ − + − +     víi x > 0 , x ≠ 1. a. Rót gän A b. TÝnh A víi x = 6 2 5− (KQ: A = 3 2 x ) Bµi 54 : Cho A= 3 2 1 1 4 : 1 1 1 1 x x x x x x   + +   − −  ÷  ÷  ÷ − + +   −   víi x ≥ 0 , x ≠ 1. a. Rót gän A. b. T×m x Z ∈ ®Ó A Z∈ (KQ: A = 3 x x − ) Bµi 55: Cho A= 1 2 2 1 2 : 1 1 1 1 x x x x x x x x   −   − −  ÷  ÷  ÷ − + − + − −     víi x ≥ 0 , x ≠ 1. a. Rót gän A. b. T×m x Z ∈ ®Ó A Z∈ 9 Trường THCS Đồng - Tường - Thanh Chương- Nghệ An c. T×m x ®Ó A ®¹t GTNN . (KQ: A = 1 1 x x − + ) Bµi 56 : Cho A = 2 3 3 2 2 : 1 9 3 3 3 x x x x x x x x     + − + − −  ÷  ÷  ÷  ÷ − + − −     víi x ≥ 0 , x ≠ 9 . a. Rót gän A. b. T×m x ®Ó A < - 1 2 ( KQ : A = 3 3a − + ) Bµi 57 : Cho A = 1 1 8 3 1 : 1 1 1 1 1 x x x x x x x x x x     + − − − − − −  ÷  ÷  ÷  ÷ − − − + −     víi x ≥ 0 , x ≠ 1. a. Rót gän A b. TÝnh A víi x = 6 2 5− (KQ: A = 4 4 x x + ) c . CMR : A 1≤ Bµi 58 : Cho A = 1 1 1 : 1 2 1 x x x x x x +   +  ÷ − − − +   víi x > 0 , x ≠ 1. a. Rót gän A (KQ: A = 1x x − ) b.So s¸nh A víi 1 Bµi 59 : Cho A = 1 1 8 3 2 : 1 9 1 3 1 3 1 3 1 x x x x x x x     − − − + −  ÷  ÷  ÷  ÷ − − + +     Víi 1 0, 9 x x≥ ≠ a. Rót gän A. b. T×m x ®Ó A = 6 5 c. T×m x ®Ó A < 1. ( KQ : A = 3 1 x x x + − ) Bµi 60 : Cho A = 2 2 2 2 1 . 1 2 2 1 x x x x x x x   − + − + −  ÷  ÷ − + +   víi x ≥ 0 , x ≠ 1. a. Rót gän A. b. CMR nÕu 0 < x < 1 th× A > 0 c. TÝnh A khi x =3+2 2 d. T×m GTLN cña A (KQ: A = (1 )x x− ) Bµi 61 : Cho A = 2 1 1 : 2 1 1 1 x x x x x x x x   + − + +  ÷  ÷ − + + −   víi x ≥ 0 , x ≠ 1. a. Rót gän A. 10 [...]... thay vào (1) ta có : 4x 3 = 0 x = 3 4 + Nếu m 0 Lập biệt số / = (m 2)2 m(m-3) = m2- 4m + 4 m2 + 3m =-m +4 / < 0 - m + 4 < 0 m > 4 : (1) vô nghiệm / = 0 - m + 4 = 0 m = 4 : (1) có nghiệm kép / x1 = x2 = - b = m 2 = 4 2 = 1 a m 2 2 > 0 - m + 4 > 0 m < 4: (1) có 2 nghiệm phân biệt x1 = m 2 m + 4 ; x2 = m 2 + m + 4 m m / Vậy : m > 4 : phơng trình (1) vô nghiệm 1 2 m = 4 : phơng trình (1)... = (m + 1)2 (m 4) = m2 + 2m + 1 m + 4 = m2 + m + 5 = m2 + 2.m 1 1 19 1 19 + + = (m + )2 + > 0 với mọi m 2 4 4 2 4 Vậy phơng trình (1) luôn có 2 nghiệm phân biệt x1 , x2 3 Vì phơng trình có nghiệm với mọi m ,theo hệ thức Viét ta có: x1 + x2 = 2( m + 1) và x1x2 = m 4 Ta có (x1 x2)2 = (x1 + x2)2 4x1x2 = 4( m + 1)2 4 (m 4) = 4m2 + 4m + 20 = 4( m2 + m + 5) = 4[ (m + 1 2 19 ) + ] 2 4 1 1 => x1 x2 =... hai nghiệm / 0 0 m 4 (*) (ở câu a đã có) - Thay x = 3 vào phơng trình (1) ta có : 9m 6(m 2) + m -3 = 0 4m = -9 m = - Đối chiếu với điều kiện (*), giá trị m = - 9 4 9 thoả mãn 4 *) Cách 2: Không cần lập điều kiện / 0 mà thay x = 3 vào (1) để tìm đợc m = 9 9 - Sau đó thay m = - vào phơng trình (1) : 4 4 9 4 9 9 - 2)x - - 3 = 0 -9x2 +34x 21 = 0 4 4 x1 = 3 / = 289 189 = 100 > 0 => có x2 =... 3 4 - x2 2(- *)Để tìm nghiệm thứ 2 ,ta có 3 cách làm Cách 1: Thay m = - 9 vào phơng trình đã cho rồi giải phơng trình để tìm đợc x2 = 4 7 (Nh phần trên đã làm) 9 9 Cách 2: Thay m = - vào công thức tính tổng 2 nghiệm: 4 9 2( 2) 2(m 2) 34 4 = = x1 + x2 = 9 m 9 4 34 34 7 x2 = - x1 = -3= 9 9 9 9 vào công trức tính tích hai nghiệm 4 9 3 m3 21 21 21 7 = 4 = x1 x2 = => x2 = : x1 = :3= 9 m 9 9 9 9 4. .. với m Z thì 2m 3 0 , vây phơng trình có nghiệm : x = - (m + 2) để pt có nghiệm nguyên thì 4 2m 3 Giải ra ta đợc m = 2, m = 1 Ví dụ 3 : Tìm nghiệm nguyên dơng của phơng trình : Giải : a) Ta có : 7x + 4y = 23 y = Vì y Z x 1 4 Giải ra ta đợc x = 1 và y = 4 4 2m - 3 7x + 4y = 23 23 - 7x x 1 = 6 2x + 4 4 Phơng trình bậc hai định lý viet và ứng dụng A.Kin thc cn ghi nh 1 bin lun s cú nghim ca... (x1 + x2)2 2x1x2 = 10 Với điều kiện(*) , áp dụng hệ trức vi ét: x1 + x2 = - b = - 2k và x1x2 = 2 5k a Vậy (-2k)2 2(2 5k) = 10 2k2 + 5k 7 = 0 (Có a + b + c = 2+ 5 7 = 0 ) => k1 = 1 , k2 = - 7 2 Để đối chiếu với điều kiện (*) ta thay lần lợt k1 , k2 vào / = k2 + 5k 2 + k1 = 1 => / = 1 + 5 2 = 4 > 0 ; thoả mãn + k2 = - 7 49 35 49 70 8 29 => / = không thoả mãn 2= = 2 4 2 4 8 Vậy k = 1 là giá... và trên đoạn đờng dốc tơng ứng là 40 km/h và 20 km/h Biết rằng đoạn đờng dốc ngắn hơn đoạn đờng bằng là 110km và thời gian để ngời đó đi cả quãng đờng là 3 giờ 30 phút Tính chiều dài quãng đờng ngời đó đã đi Bài 92: Một xe tải và một xe con cùng khởi hành từ A đến B Xe tảI đi với vận tốc 30 Km/h , xe con đi với vận tốc 45 Km/h Sau khi đi đợc 3 quãng đờng AB , xe 4 con tăng vận tốc thêm 5 Km/h trên... cho trở thành; 5x 5 = 0 x = 1 + Nếu : m + 2 0 => m - 2 Khi đó phơng trình đã cho là phơng trình bậc hai có biệt số : = (1 2m)2 - 4( m + 2)( m 3) = 1 4m + 4m2 4( m2- m 6) = 25 > 0 Do đó phơng trình có hai nghiệm phân biệt x1 = 2m 1 + 5 2m + 4 = =1 2(m + 2) 2m + 4 x2 = 2m 1 5 2(m 3) m 3 = = 2(m + 2) 2( m + 2) m + 2 Tóm lại phơng trình đã cho luôn có nghiệm với mọi m 23 Trng THCS ng - Tng -... trình có 2 nghiệm x1 = 3 , x2 = - 2 7 Bài 4 : Giải các phơng trình sau bằng cánh nhẩm nhanh nhất (m là tham số) a) x2 + (3m 5)x 3m + 4 = 0 b) (m 3)x2 (m + 1)x 2m + 2 = 0 Hớng dẫn : a) x2 + (3m 5)x 3m + 4 = 0 có a + b + c = 1 + 3m 5 3m + 4 = 0 Suy ra : x1 = 2 Hoặc x2 = m +1 3 b) (m 3)x2 (m + 1)x 2m + 2 = 0 (*) * m- 3 = 0 m = 3 (*) trở thành 4x 4 = 0 x = - 1 x1 = 1 * m 3 0 m 3 (*)... sông trong 7 giờ , xuôi dòng 108 Km và ngợc dòng 63 Km Một lần khác , ca nô đó cũng chạy trong 7 giờ, xuôi dòng 81 Km và ngợc dòng 84 Km Tính vận tốc dòng nớc chảy và vận tốc riêng ( thực ) của ca nô Bài103: Một tầu thuỷ chạy trên một khúc sông dài 80 Km , cả đi và về mất 8 giờ 20 phút Tính vận tốc của tầu khi nớc yên lặng , biết rằng vận tốc dòng nớc là 4 Km/h Bài 1 04: Một chiếc thuyền khởi hành . = a 3 a 1 4 a 4 4 a a 2 a 2 + + + (a 0; a 4) a) Rút gọn P. b) Tính giá trị của P với a = 9. 6 Trng THCS ng - Tng - Thanh Chng- Ngh An H ớng dẫn : a) ĐKXĐ : a 0, a 4. Biểu thức. 0, x 1. Biểu thức rút gọn : 3x 16x P + + = b) Ta thấy 347 x = ĐKXĐ . Suy ra 22 3 3103 P + = c) P min =4 khi x =4. Bài 41 : Cho biểu thức + + + + = 1 3 22 : 9 33 33 2 x x x x x x x x P a 3 - m2 4 . để pt có nghiệm nguyên thì 4 2m 3 . Giải ra ta đợc m = 2, m = 1. Ví dụ 3 : Tìm nghiệm nguyên dơng của phơng trình : 7x + 4y = 23. Giải : a) Ta có : 7x + 4y = 23 y = 4 7x -

Ngày đăng: 11/07/2014, 22:00

HÌNH ẢNH LIÊN QUAN

1. Hình trụ: - 4 dang co ban vao lop 10
1. Hình trụ: (Trang 47)
1. Hình lăng trụ: - 4 dang co ban vao lop 10
1. Hình lăng trụ: (Trang 47)
4. Hình cầu: - 4 dang co ban vao lop 10
4. Hình cầu: (Trang 48)
Bài 4: Hình học  ( 3 điểm) - 4 dang co ban vao lop 10
i 4: Hình học ( 3 điểm) (Trang 67)

TRÍCH ĐOẠN

TÀI LIỆU CÙNG NGƯỜI DÙNG

  • Đang cập nhật ...

TÀI LIỆU LIÊN QUAN

w