1. Trang chủ
  2. » Giáo án - Bài giảng

on lop 10 co 4 dang co ban

176 273 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 176
Dung lượng 4,5 MB

Nội dung

Trng THCS ng - Tng - Thanh Chng- Ngh An ôn tập vào lớp 10 năm học 2009-2010 Phần 1: Các loại bài tập về biểu thức Bài 1: Cho biểu thức : + + + + = 6 5 3 2 aaa a P a2 1 a) Rút gọn P b) Tìm giá trị của a để P<1 Bài 2: Cho biểu thức: P= + + + + + + + 65 2 3 2 2 3 : 1 1 xx x x x x x x x a) Rút gọn P b)Tìm giá trị của a để P<0 Bài 3: Cho biểu thức: P= + + + 13 23 1: 19 8 13 1 13 1 x x x x xx x a) Rút gọn P b) Tìm các giá trị của x để P= 5 6 Bài 4: Cho biểu thức P= + + + 1 2 1 1 : 1 1 aaaa a a a a a) Rút gọn P b) Tìm giá trị của a để P<1 c) Tìm giá trị của P nếu 3819 =a Bài 5: Cho biểu thức: P= + + + + a a a a a a a aa 1 1 . 1 1 : 1 )1( 332 a) Rút gọn P b) Xét dấu của biểu thức M=a.(P- 2 1 ) Bài 6: Cho biểu thức: P = + + + + + + + + 12 2 12 1 1:1 12 2 12 1 x xx x x x xx x x a) Rút gọn P b) Tính giá trị của P khi x ( ) 223. 2 1 += 1 Trng THCS ng - Tng - Thanh Chng- Ngh An Bài 7: Cho biểu thức: P= + + + 1 1: 1 1 1 2 x x xxxxx x a) Rút gọn P b) Tìm x để P 0 Bài 8: Cho biểu thức: P= + + ++ + a a a aa a a a 1 1 . 1 12 3 3 a) Rút gọn P b) Xét dấu của biểu thức P. a1 Bài 9: Cho biểu thức P= . 1 1 1 1 1 2 :1 + ++ + + + x x xx x xx x a) Rút gọn P b) So sánh P với 3 Bài 10: Cho biểu thức : P= + + + a a aa a a aa 1 1 . 1 1 a) Rút gọn P b) Tìm a để P< 347 Bài 11: Cho biểu thức: P= + + + 1 3 22 : 9 33 33 2 x x x x x x x x a) Rút gọn P b) Tìm x để P< 2 1 c) Tìm giá trị nhỏ nhất của P Bài 12: Cho biểu thức: P= + + 3 2 2 3 6 9 :1 9 3 x x x x xx x x xx a) Rút gọn P b) Tìm giá trị của x để P<1 Bài 13: Cho biểu thức : P= 3 32 1 23 32 1115 + + + + x x x x xx x a) Rút gọn P b) Tìm các giá trị của x để P= 2 1 c) Chứng minh P 3 2 Bài 14: Cho biểu thức: P= 2 2 44 2 mx m mx x mx x + + với m>0 a) Rút gọn P b) Tính x theo m để P=0. c) Xác định các giá trị của m để x tìm đợc ở câu b thoả mãn điều kiện x>1 2 Trng THCS ng - Tng - Thanh Chng- Ngh An Bài 15: Cho biểu thức P= 1 2 1 2 + + + + a aa aa aa a) Rút gọn P b) Biết a>1 Hãy so sánh P với P c) Tìm a để P=2 d) Tìm giá trị nhỏ nhất của P Bài 16: Cho biểu thức P= + + + + + + + + 1 11 1 :1 11 1 ab aab ab a ab aab ab a a) Rút gọn P b) Tính giá trị của P nếu a= 32 và b= 31 13 + c) Tìm giá trị nhỏ nhất của P nếu 4=+ ba Bài 17: Cho biểu thức : P= + + + + + + 1 1 1 1111 a a a a a a aa aa aa aa a) Rút gọn P b) Với giá trị nào của a thì P=7 c) Với giá trị nào của a thì P>6 Bài 18: Cho biểu thức: P= + + 1 1 1 1 2 1 2 2 a a a a a a a) Rút gọn P b) Tìm các giá trị của a để P<0 c) Tìm các giá trị của a để P=-2 Bài 19: Cho biểu thức P= ( ) ab abba ba abba + + . 4 2 a) Tìm điều kiện để P có nghĩa. b) Rút gọn P c) Tính giá trị của P khi a= 32 và b= 3 Bài 20: Cho biểu thức : P= 2 1 : 1 1 11 2 + ++ + + x xxx x xx x a) Rút gọn P b) Chứng minh rằng P>0 x 1 Bài 21: Cho biểu thức : P= ++ + + 1 2 1: 1 1 1 2 xx x xxx xx a) Rút gọn P b) Tính P khi x= 325 + Bài 22: Cho biểu thức P= xx x x x 24 1 : 24 2 4 2 3 2 1 :1 + + 3 Trng THCS ng - Tng - Thanh Chng- Ngh An a) Rút gọn P b) Tìm giá trị của x để P=20 Bài 23: Cho biểu thức : P= ( ) yx xyyx xy yx yx yx + + + 2 33 : a) Rút gọn P b) Chứng minh P 0 Bài 24: Cho biểu thức P= ++ + + + baba ba bbaa ab babbaa ab ba : 31 . 31 a) Rút gọn P b) Tính P khi a=16 và b=4 Bài 25: Cho biểu thức: P= 12 . 1 2 1 12 1 + + + a aa aa aaaa a aa a) Rút gọn P b) Cho P= 61 6 + tìm giá trị của a c) Chứng minh rằng P> 3 2 Bài 26: Cho biểu thức: P= + + + + 3 5 5 3 152 25 :1 25 5 x x x x xx x x xx a) Rút gọn P b) Với giá trị nào của x thì P<1 Bài 27: Cho biểu thức P= ( ) ( ) baba baa babbaa a baba a 222 .1 : 133 ++ + ++ a) Rút gọn P b) Tìm những giá trị nguyên của a để P có giá trị nguyên Bài 28: Cho biểu thức P= + + 1 2 2 1 : 1 1 1 a a a a aa a) Rút gọn P b) Tìm giá trị của a để P> 6 1 Bài 29: Cho biểu thức: P= 33 33 : 112 . 11 xyyx yyxxyx yx yxyx + +++ ++ + + a) Rút gọn P b) Cho x.y=16. Xác định x,y để P có giá trị nhỏ nhất 4 Trng THCS ng - Tng - Thanh Chng- Ngh An Bài 30: Cho biểu thức : P= x x yxyxx x yxy x + 1 1 . 22 2 2 3 a) Rút gọn P b) Tìm tất cả các số nguyên dơng x để y=625 và P<0,2 Bài tập rút gọn Bài 31 : 1) Đơn giản biểu thức : P = 14 6 5 14 6 5+ + . 2) Cho biểu thức : Q = x 2 x 2 x 1 . x 1 x 2 x 1 x + + ữ ữ + + a) Rút gọn biểu thức Q. b) Tìm x để Q > - Q. c) Tìm số nguyên x để Q có giá trị nguyên. H ớng dẫn : 1. P = 6 2. a) ĐKXĐ : x > 0 ; x 1. Biểu thức rút gọn : Q = 1 2 x . b) Q > - Q x > 1. c) x = { } 3;2 thì Q Z Bài 32 : Cho biểu thức P = 1 x x 1 x x + + a) Rút gọn biểu thức sau P. b) Tính giá trị của biểu thức P khi x = 1 2 . H ớng dẫn : a) ĐKXĐ : x > 0 ; x 1. Biểu thức rút gọn : P = x x + 1 1 . b) Với x = 1 2 thì P = - 3 2 2 . Bài 33 : Cho biểu thức : A = 1 1 1 1 + + x x x xx a) Rút gọn biểu thức sau A. b) Tính giá trị của biểu thức A khi x = 4 1 c) Tìm x để A < 0. 5 Trng THCS ng - Tng - Thanh Chng- Ngh An d) Tìm x để A = A. H ớng dẫn : a) ĐKXĐ : x 0, x 1. Biểu thức rút gọn : A = 1x x . b) Với x = 4 1 thì A = - 1. c) Với 0 x < 1 thì A < 0. d) Với x > 1 thì A = A. Bài 34 : Cho biểu thức : A = 1 1 3 1 a 3 a 3 a + ữ ữ + a) Rút gọn biểu thức sau A. b) Xác định a để biểu thức A > 2 1 . H ớng dẫn : a) ĐKXĐ : a > 0 và a 9. Biểu thức rút gọn : A = 3 2 +a . b) Với 0 < a < 1 thì biểu thức A > 2 1 . Bài 35 : Cho biểu thức: A = 2 2 x 1 x 1 x 4x 1 x 2003 . x 1 x 1 x 1 x + + + ữ + . 1) Tìm điều kiện đối với x để biểu thức có nghĩa. 2) Rút gọn A. 3) Với x Z ? để A Z ? H ớng dẫn : a) ĐKXĐ : x 0 ; x 1. b) Biểu thức rút gọn : A = x x 2003+ với x 0 ; x 1. c) x = - 2003 ; 2003 thì A Z . Bài 36 : Cho biểu thức: A = ( ) 2 x 2 x 1 x x 1 x x 1 : x 1 x x x x + + ữ ữ + . a) Rút gọn A. b) Tìm x để A < 0. c) Tìm x nguyên để A có giá trị nguyên. H ớng dẫn : a) ĐKXĐ : x > 0 ; x 1. Biểu thức rút gọn : A = 1 1 + x x . b) Với 0 < x < 1 thì A < 0. 6 Trng THCS ng - Tng - Thanh Chng- Ngh An c) x = { } 9;4 thì A Z. Bài 37 : Cho biểu thức: A = x 2 x 1 x 1 : 2 x x 1 x x 1 1 x + + + ữ ữ + + a) Rút gọn biểu thức A. b) Chứng minh rằng: 0 < A < 2. H ớng dẫn : a) ĐKXĐ : x > 0 ; x 1. Biểu thức rút gọn : A = 1 2 ++ xx b) Ta xét hai trờng hợp : +) A > 0 1 2 ++ xx > 0 luôn đúng với x > 0 ; x 1 (1) +) A < 2 1 2 ++ xx < 2 2( 1++ xx ) > 2 xx + > 0 đúng vì theo gt thì x > 0. (2) Từ (1) và (2) suy ra 0 < A < 2(đpcm). Bài 38 : Cho biểu thức: P = a 3 a 1 4 a 4 4 a a 2 a 2 + + + (a 0; a 4) a) Rút gọn P. b) Tính giá trị của P với a = 9. H ớng dẫn : a) ĐKXĐ : a 0, a 4. Biểu thức rút gọn : P = 2 4 a b) Ta thấy a = 9 ĐKXĐ . Suy ra P = 4 Bài 39 : Cho biểu thức: N = a a a a 1 1 a 1 a 1 + + ữ ữ ữ ữ + 1) Rút gọn biểu thức N. 2) Tìm giá trị của a để N = -2004. H ớng dẫn : a) ĐKXĐ : a 0, a 1. Biểu thức rút gọn : N = 1 a . b) Ta thấy a = - 2004 ĐKXĐ . Suy ra N = 2005. Bài 40 : Cho biểu thức 3x 3x 1x x2 3x2x 19x26xx P + + + + = a. Rút gọn P. b. Tính giá trị của P khi 347x = 7 Trng THCS ng - Tng - Thanh Chng- Ngh An c. Với giá trị nào của x thì P đạt giá trị nhỏ nhất và tính giá trị nhỏ nhất đó. H ớng dẫn : a ) ĐKXĐ : x 0, x 1. Biểu thức rút gọn : 3x 16x P + + = b) Ta thấy 347x = ĐKXĐ . Suy ra 22 33103 P + = c) P min =4 khi x=4. Bài 41 : Cho biểu thức + + + + = 1 3 22 : 9 33 33 2 x x x x x x x x P a. Rút gọn P. b. Tìm x để 2 1 P < c. Tìm giá trị nhỏ nhất của P. H ớng dẫn : a. ) ĐKXĐ : x 0, x 9. Biểu thức rút gọn : 3x 3 P + = b. Với 9x0 < thì 2 1 P < c. P min = -1 khi x = 0 Bài 42: Cho A= 1 1 1 4 . 1 1 a a a a a a a + + + ữ ữ ữ + với x>0 ,x 1 a. Rút gọn A b. Tính A với a = ( ) ( ) ( ) 4 15 . 10 6 . 4 15+ ( KQ : A= 4a ) Bài 43: Cho A= 3 9 3 2 1 : 9 6 2 3 x x x x x x x x x x + ữ ữ ữ ữ + + với x 0 , x 9, x 4 . a. Rút gọn A. b. x= ? Thì A < 1. c. Tìm x Z để A Z (KQ : A= 3 2x ) Bài 44: Cho A = 15 11 3 2 2 3 2 3 1 3 x x x x x x x + + + + với x 0 , x 1. a. Rút gọn A. b. Tìm GTLN của A. 8 Trường THCS Đồng - Tường - Thanh Chương- Nghệ An c. T×m x ®Ó A = 1 2 d. CMR : A 2 3 ≤ . (KQ: A = 2 5 3 x x − + ) Bµi 45: Cho A = 2 1 1 1 1 1 x x x x x x x + + + + − + + − víi x ≥ 0 , x ≠ 1. a . Rót gän A. b. T×m GTLN cña A . ( KQ : A = 1 x x x+ + ) Bµi 46: Cho A = 1 3 2 1 1 1x x x x x − + + + − + víi x ≥ 0 , x ≠ 1. a . Rót gän A. b. CMR : 0 1A≤ ≤ ( KQ : A = 1 x x x− + ) Bµi 47: Cho A = 5 25 3 5 1 : 25 2 15 5 3 x x x x x x x x x x     − − + − − − +  ÷  ÷  ÷  ÷ − + − + −     a. Rót gän A. b. T×m x Z∈ ®Ó A Z∈ ( KQ : A = 5 3x + ) Bµi 48: Cho A = 2 9 3 2 1 5 6 2 3 a a a a a a a − + + − − − + − − víi a ≥ 0 , a ≠ 9 , a ≠ 4. a. Rót gän A. b. T×m a ®Ó A < 1 c. T×m a Z ∈ ®Ó A Z∈ ( KQ : A = 1 3 a a + − ) Bµi 49: Cho A= 7 1 2 2 2 : 4 4 2 2 2 x x x x x x x x x x     − + + − + − −  ÷  ÷  ÷  ÷ − − − − +     víi x > 0 , x ≠ 4. a. Rót gän A. b. So s¸nh A víi 1 A ( KQ : A = 9 6 x x + ) Bµi50: Cho A = ( ) 2 3 3 : x y xy x y x y y x x y x y   − + − −  ÷ +  ÷ − − +   víi x ≥ 0 , y ≥ 0, x y ≠ a. Rót gän A. 9 Trường THCS Đồng - Tường - Thanh Chương- Nghệ An b. CMR : A ≥ 0 ( KQ : A = xy x xy y− + ) Bµi 51 : Cho A = 1 1 1 1 1 . 1 1 x x x x x x x x x x x x x x   − + + −   − + − +  ÷  ÷  ÷ − + − +     Víi x > 0 , x ≠ 1. a. Rót gän A. b. T×m x ®Ó A = 6 ( KQ : A = ( ) 2 1x x x + + ) Bµi 52 : Cho A = ( ) 4 3 2 : 2 2 2 x x x x x x x x     − +  ÷ + −  ÷  ÷  ÷ − − −     víi x > 0 , x ≠ 4. a. Rót gän A b. TÝnh A víi x = 6 2 5− (KQ: A = 1 x− ) Bµi 53 : Cho A= 1 1 1 1 1 : 1 1 1 1 2x x x x x     + − +  ÷  ÷ − + − +     víi x > 0 , x ≠ 1. a. Rót gän A b. TÝnh A víi x = 6 2 5− (KQ: A = 3 2 x ) Bµi 54 : Cho A= 3 2 1 1 4 : 1 1 1 1 x x x x x x   + +   − −  ÷  ÷  ÷ − + +   −   víi x ≥ 0 , x ≠ 1. a. Rót gän A. b. T×m x Z∈ ®Ó A Z∈ (KQ: A = 3 x x − ) Bµi 55: Cho A= 1 2 2 1 2 : 1 1 1 1 x x x x x x x x   −   − −  ÷  ÷  ÷ − + − + − −     víi x ≥ 0 , x ≠ 1. a. Rót gän A. b. T×m x Z ∈ ®Ó A Z∈ c. T×m x ®Ó A ®¹t GTNN . (KQ: A = 1 1 x x − + ) Bµi 56 : Cho A = 2 3 3 2 2 : 1 9 3 3 3 x x x x x x x x     + − + − −  ÷  ÷  ÷  ÷ − + − −     víi x ≥ 0 , x ≠ 9 . a. Rót gän A. b. T×m x ®Ó A < - 1 2 ( KQ : A = 3 3a − + ) Bµi 57 : Cho A = 1 1 8 3 1 : 1 1 1 1 1 x x x x x x x x x x     + − − − − − −  ÷  ÷  ÷  ÷ − − − + −     víi x ≥ 0 , x ≠ 1. 10 [...]... : 4x 3 = 0 x = 3 4 + Nếu m 0 Lập biệt số / = (m 2)2 m(m-3) = m2- 4m + 4 m2 + 3m =-m +4 / < 0 - m + 4 < 0 m > 4 : (1) vô nghiệm / = 0 - m + 4 = 0 m = 4 : (1) có nghiệm kép b/ m 2 4 2 1 = = = a m 2 2 / > 0 - m + 4 > 0 m < 4: (1) có 2 nghiệm phân biệt m2 m +4 m2+ m +4 x1 = ; x2 = m m x1 = x2 = - Vậy : m > 4 : phơng trình (1) vô nghiệm m = 4 : phơng trình (1) Có nghiệm kép x = 1 2 0 m < 4. .. trình có nghiệm với mọi m ,theo hệ thức Viét ta có: x1 + x2 = 2( m + 1) và x1x2 = m 4 Ta có (x1 x2)2 = (x1 + x2)2 4x1x2 = 4( m + 1)2 4 (m 4) = 4m2 + 4m + 20 = 4( m2 + m + 5) = 4[ (m + 1 2 19 ) + ] 2 4 1 1 1 19 19 2 => x1 x2 = 2 (m + ) 2 + = 19 khi m + = 0 m = 2 4 2 1 19 khi m = 2 4 Vậy x1 x2 đạt giá trị nhỏ nhất bằng 2 Bài 8 : Cho phơng trình (m + 2) x2 + (1 2m)x + m 3 = 0 (m là tham số) 1)... có : 9m 6(m 2) + m -3 = 0 4m = -9 m = - Đối chiếu với điều kiện (*), giá trị m = - 9 4 9 thoả mãn 4 *) Cách 2: Không cần lập điều kiện / 0 mà thay x = 3 vào (1) để tìm đợc m = 9 4 9 vào phơng trình (1) : 4 9 9 9 - x2 2(- - 2)x - - 3 = 0 -9x2 +34x 21 = 0 4 4 4 x1 = 3 / có = 289 189 = 100 > 0 => x2 = 7 9 9 Vậy với m = - thì phơng trình (1) có một nghiệm x= 3 4 - Sau đó thay m = - *)Để tìm... rồi giải phơng trình để tìm đợc x2 = 4 7 (Nh phần trên đã làm) 9 9 Cách 2: Thay m = - vào công thức tính tổng 2 nghiệm: 4 9 2( 2) 2(m 2) 34 4 = = x1 + x2 = 9 m 9 4 34 34 7 x2 = - x1 = -3= 9 9 9 27 Trng THCS ng - Tng - Thanh Chng- Ngh An 9 vào công trức tính tích hai nghiệm 4 9 3 m3 21 21 21 7 = 4 = x1 x2 = => x2 = : x1 = :3= 9 m 9 9 9 9 4 Cách 3: Thay m = - Bài 10: Cho phơng trình : x2 + 2kx + 2... và trên đoạn đờng dốc tơng ứng là 40 km/h và 20 km/h Biết rằng đoạn đờng dốc ngắn hơn đoạn đờng bằng là 110km và thời gian để ngời đó đi cả quãng đờng là 3 giờ 30 phút Tính chiều dài quãng đờng ngời đó đã đi Bài 92: Một xe tải và một xe con cùng khởi hành từ A đến B Xe tảI đi với vận tốc 30 Km/h , xe con đi với vận tốc 45 Km/h Sau khi đi đợc 3 quãng đờng AB , xe 4 con tăng vận tốc thêm 5 Km/h trên... nguyên thì 4 2m 3 Giải ra ta đợc m = 2, m = 1 Ví dụ 3 : Tìm nghiệm nguyên dơng của phơng trình : Giải : a) Ta có : 7x + 4y = 23 y = Vì y Z x 1 4 Giải ra ta đợc x = 1 và y = 4 4 2m - 3 7x + 4y = 23 23 - 7x x 1 = 6 2x + 4 4 Phơng trình bậc hai định lý viet và ứng dụng A.Kin thc cn ghi nh 18 Trng THCS ng - Tng - Thanh Chng- Ngh An 1 bin lun s cú nghim ca phng trỡnh : ax2 + bx + c = 0 (1) trong ú... (1) nói trong phần 2.) Giải 1 Với m = - 5 phơng trình (1) trở thành x2 + 8x 9 = 0 và có 2 nghiệm là x1 = 1 , x2 = - 9 2 Có / = (m + 1)2 (m 4) = m2 + 2m + 1 m + 4 = m2 + m + 5 = m2 + 2.m 1 1 19 1 19 + + = (m + )2 + > 0 với mọi m 2 4 4 2 4 Vậy phơng trình (1) luôn có 2 nghiệm phân biệt x1 , x2 3 Vì phơng trình có nghiệm với mọi m ,theo hệ thức Viét ta có: x1 + x2 = 2( m + 1) và x1x2 = m 4 Ta có (x1... (-2k)2 2(2 5k) = 10 2k2 + 5k 7 = 0 (Có a + b + c = 2+ 5 7 = 0 ) => k1 = 1 , k2 = - 7 2 Để đối chiếu với điều kiện (*) ta thay lần lợt k1 , k2 vào / = k2 + 5k 2 + k1 = 1 => / = 1 + 5 2 = 4 > 0 ; thoả mãn + k2 = - 7 49 35 49 70 8 29 2= = => / = không thoả mãn 2 4 2 4 8 Vậy k = 1 là giá trị cần tìm Cách 2 : Không cần lập điều kiện / 0 Cách giải là: Từ điều kiện x12 + x22 = 10 ta tìm đợc k1 =... của hàm số đi qua điểm (1 ; -4) 3) Tìm điểm cố định mà đồ thị của hàm số luôn đi qua với mọi m Hớng dẫn : 1) Để hai đồ thị của hàm số song song với nhau cần : m 1 = - 2 m = -1 Vậy với m = -1 đồ thị của hàm số song song với đồ thị hàm số y = -2x + 1 2) Thay (x;y) = (1 ; -4) vào pt : y = (m 1)x + m + 3 Ta đợc : m = -3 Vậy với m = -3 thì đồ thị của hàm số đi qua điểm (1 ; -4) 3) Gọi điểm cố định mà đồ... hơn nửa giờ Tính vận tốc của xe đạp tren quãng đờng đã đi lúc đầu 2 Năng xuất Bài 108 : Hai đội công nhân cùng làm một công việc thì làm xong trong 4 giờ Nếu mỗi đội làm một mình để làm xong công việc ấy , thì đội thứ nhất cần thời gian ít hơn so với đội thứ hai là 6 giờ Hỏi mỗi đội làm một mình xong công việc ấy trong bao lâu? 36 . = 0 Bài 42 : Cho A= 1 1 1 4 . 1 1 a a a a a a a + + + ữ ữ ữ + với x>0 ,x 1 a. Rút gọn A b. Tính A với a = ( ) ( ) ( ) 4 15 . 10 6 . 4 15+ ( KQ : A= 4a ) Bài 43 : Cho A=. thức: P = a 3 a 1 4 a 4 4 a a 2 a 2 + + + (a 0; a 4) a) Rút gọn P. b) Tính giá trị của P với a = 9. H ớng dẫn : a) ĐKXĐ : a 0, a 4. Biểu thức rút gọn : P = 2 4 a b) Ta thấy a. 0, x 1. Biểu thức rút gọn : 3x 16x P + + = b) Ta thấy 347 x = ĐKXĐ . Suy ra 22 3 3103 P + = c) P min =4 khi x =4. Bài 41 : Cho biểu thức + + + + = 1 3 22 : 9 33 33 2 x x x x x x x x P a.

Ngày đăng: 10/07/2014, 21:00

HÌNH ẢNH LIÊN QUAN

Bài 4: Hình học  ( 3 điểm) - on lop 10 co 4 dang co ban
i 4: Hình học ( 3 điểm) (Trang 76)

TỪ KHÓA LIÊN QUAN

w