1. Trang chủ
  2. » Giáo án - Bài giảng

Bài tập bất đẳng thức

1 283 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 1
Dung lượng 62,5 KB

Nội dung

BÀI TẬP BẤT ĐẲNG THỨC 2 Câu V ( 1 điểm ) Cho x, y, z là các số dương thỏa mãn 1 1 1 4 x y z + + = . CMR: 1 1 1 1 2 2 2x y z x y z x y z + + ≤ + + + + + + +Ta có : 1 1 1 1 2 4 2 .( ) x y z x y z ≤ + + + + ; 1 1 1 1 2 4 2 ( ) x y z y x z ≤ + + + + ; 1 1 1 1 2 4 2 ( ) x y z z y x ≤ + + + + + Lại có : 1 1 1 1 ( ); x y 4 x y ≤ + + 1 1 1 1 ( ); y z 4 y z ≤ + + 1 1 1 1 ( ); x z 4 x z ≤ + + cộng các BĐT này ta được đpcm. Câu V: Cho a,b,c 0 : abc 1.> = Chứng minh rằng: 1 1 1 1 a b 1 b c 1 c a 1 + + ≤ + + + + + + Ta có: ( ) ( ) ( ) ( ) ( ) ( ) ( ) 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 a b a b a ab b ab a b a b 1 ab a b 1 ab a b abc ab a b c 1 1 c a b 1 a b c ab a b c + = + − + ≥ + ⇒ + + ≥ + + = + + = + + ⇒ ≤ = + + + + + + Tương tự suy ra 2. Cho x, y, z lµ c¸c sè thùc d¬ng tho¶ m·n x + y + z = xyz. T×m GTNN cña A = )1()1()1( zxy zx yzx yz xyz xy + + + + + . Câu V: (1 điểm) Cho a,b,c là các số dương thỏa mãn a + b + c = 1. Chứng minh rằng: 3 a b b c c a a b c bc a ca b + + + + + ≥ + + + P*Từ đó 1 1 1 (1 )(1 ) (1 )(1 ) (1 )(1 ) c b a V T a b c a c b − − − = + + − − − − − − Do a,b,c dương và a+b+c=1 nên a,b,c thuộc khoảng (0;1) => 1-a,1-b,1-c dương *áp dụng bất đẳng thức Côsi cho ba số dương ta được 3 1 1 1 3. . . (1 )(1 ) (1 )(1 ) (1 )(1 ) c b a V T a b c a c b − − − ≥ − − − − − − =3 (đpcm) . BÀI TẬP BẤT ĐẲNG THỨC 2 Câu V ( 1 điểm ) Cho x, y, z là các số dương thỏa mãn 1 1 1 4 x y z + + = .

Ngày đăng: 11/07/2014, 07:00

TỪ KHÓA LIÊN QUAN

w