Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 28 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
28
Dung lượng
194,68 KB
Nội dung
Lý thuyết trò chơi Beautiful Mind là một bộ phim khá hay về cuộc đời của Nash, một giáo sư thuộc viện Toán học trường Princeton giải Nobel kinh tế 1994. Một điều khá thú vị về bộ phim này, mà cho đến tận gần đây, (sau gần hai năm xem bộ phim), tôi mới biết được, là Nash vẫn còn sống. Ông vẫn làm việc, tham gia giảng dạy và nghiên cứu tại trường đại học Princeton. Và ông vẫn rất gắn kết với môn toán, tuy rằng với Game Theory, ông đã được trao giải Nobel kinh tế năm 1994. Để hiểu được cái gọi là Game Theory, e rằng với trình độ hạn hẹp của tôi, khó có thể giải thích tường tận hết được. Vì vậy, ở đây tôi sẽ cố gắng trình bày sơ lược về Game Theory dựa trên hiểu biết của mình. Một điều khá bức xúc là tôi không thể viết tất cả bằng tiếng Việt được bởi vì sự thiếu hiểu biết về những từ chuyên môn của Việt Nam. Vì thế, sẽ có những từ, hoặc cụm từ tôi xin phép được giữ nguyên thể tiếng Anh. Để hiểu được về Game Theory, bài viết này tôi sẽ trình bày theo ba phần: Thứ nhất là sơ lược về Adam Smith và "invisible hand": Cái cội nguồn của kinh tế tư bản hiện đại. Thứ hai là Nash và Game Theory: cái mà một thời Nash đã cho là "overturned" toàn bộ hệ thống kinh tế hiện nay. Và thứ ba, tại sao Game Theory lại chưa đầy đủ. I. Về Adam Smith có lẽ không có gì nhiều để nói trong bài này. Hai "phát minh" chủ yếu của ông là "invisble hand" và "division of labour". Trong đó, "invisible hand" có liên quan trực tiếp đến chủ đề này. Về cơ bản, Smith cho rằng tất cả mọi người trong xã hội đều hành động rất "rationally". Ông tin rằng mỗi sáng người thợ thức dậy, bắt tay vào sản xuất hàng hóa cho "self-interest". Thế có nghĩa là họ sẽ không quyết định sản xuất cái mà họ muốn hay bán sản phẩm với giá họ đặt ra, mà trái lại, họ sẽ sản xuất theo nhu cầu của người tiêu dùng, và bán với giá người tiêu dùng sẵn sàng trả. Dựa vào lãi xuất hay lợi ích sẽ đạt được, người thợ quyết định số lượng và chất lượng. Trong thị trường, không chỉ tồn tại một người mua hay một người bán, mà hàng ngàn người mua cùng với hàng ngàn người bán. Vì thế, tất cả đều được xem là "price taker". Không một ai có đủ "market power" để quyết định về giá cả, nhưng mọi người đều phải cố gắng để đạt tới đỉnh điểm của "self-interest": người bán muốn bán nhiều, tiền nhiều; người mua muốn mua nhiều, tiền ít. Hai trạng thái tâm lí trái ngược nhau sẽ đưa đến một điểm cân bằng trong thị trường, nơi mà tất cả đều đạt được tối đa có thể. Nếu biểu diễn trên đồ thị của giá cả và sản lượng sẽ là hai đường biểu diễn mà: một cái có sản lượng tăng khi giá tăng (supply curve), một cái có sản lượng giảm khi giá tăng (demand curve). Hai đường biểu diễn này sẽ gặp nhau tại một điểm, gọi là điểm cân bằng (equilibrium point). Theo Smith, điểm này sẽ là điểm mà tổng lợi ích của tất cả những người tham gia vào thị trường (cả mua và bán) là lớn nhất. Tất nhiên, điểm này chỉ có thể xảy ra khi không có sự tham gia của chính phủ, "invisible hand" sẽ làm tất cả các việc còn lại. Tuy nhiên, trên thực tế, "equilibirum point" rất ít khi xảy xa, ngay cả khi tuyệt đối không có sự tham gia của chính phủ. Điều này luôn đúng vì xã hội phức tạp và rộng lớn hơn Adam Smith đã từng biết. Thứ nhất, là "information failure". Người mua hoặc người bán không nhận được những thông tin đúng đắn về sản phẩm. Thứ hai, phải mất khá nhiều thời gian và công sức người mua mới tìm được người bán và ngược lại. Điều này được khẳng định trên khía cạnh rằng "giữa hàng ngàn người kia, ai sẽ là người trả giá cao nhất,(hoặc bán với giá thấp nhất), để chọn. Khi hàng hóa được mua (hoặc bán) bởi những người không trả giá cao nhất (hoặc sản xuất với giá thấp nhất), điểm cân bằng không xảy ra. Vì vậy, để có được một điểm với "optimal price or quantity" là điều không tưởng trong cuộc sống hiện thực. Chính vì vấy, để giải được bài toán hóc búa này, Nash's Game Theory đã vào cuộc, đưa ra một lời giải, một điểm cân bằng thực tế hơn cho kinh tế thị trường. (mặc dù cũng chưa đầy đủ!) II. Nash and Game Theory Nash , nguyên là một học sinh trường Princeton, sau một thời gian khó khăn vượt qua được căn bệnh tâm lí (paranoid schizophrenia), đã được đề cử giải Nobel kinh tế vào năm 1994 cho thuyết Game Theory của mình. Về căn bản, trái ngược với "invisble hand" của Smith, Game Theory đưa ra một cách lí giải khác cho kinh tế thị trường, đưa lại một điểm cân bằng có thực trong hiện tại. Sau này, điểm cân bằng đó được biết đến với cái tên "Nash Equilibrium". Tại đây, cũng phải nói rõ thêm rằng Nash không phải là người đầu tiên nghiên cứu về Game Theory. Người đấu tiên phát minh và nghiên cứu Game Theory phải kể đến John von Neumann và Oskar Morgenstern. Tuy nhiên,nhiều sách báo đã cho rằng thời gian điều trị tâm lí trong bệnh viện đã cho Nash một cách nhìn mà không ai có, vượt ra ngoài phạm vi những cái thông thường. Trong bộ phim "A beautiful mind", Nash đã nghĩ ra cách giải thích hợp cho lí thuyết của mình một cách rất tình cờ khi cùng bạn bè tới quán bar. Lúc đó, một cô gái tóc vàng xinh đẹp xuất hiện, dĩ nhiên, tất cả các chàng trai đều muốn có được cơ hội làm bạn với cô. Nhưng cô gái chỉ là một người, làm sao chia sẻ cho tất cả? Game theory của Nash nói rằng "trong một cuộc chơi, tất cả những người tham gia đều có những chiến lược để thắng, và khi tất cả áp dụng chiến lược của mình vào trò chơi, sẽ ngẫu nhiên tạo nên một thế cân bằng, và bất cứ ai thay đổi chiến lược, phá vỡ thế cân bằng, sẽ không chỉ tổn hại người khác, mà chính anh ta cũng sẽ mất tất cả." Để làm rõ thêm điều này, hãy cũng nghĩ tới một ví dụ như sau: Giả sử thành phố X, có một dãy phố chính là Y. Con phố Y dài 100m, và có thể có hai cây xăng trên phố. Nếu muốn không ai phải đi quá 50m để mua xăng, và hai cây xăng có lượng khách hàng như nhau, hai cây xăng đó nên đặt ở hai đầu của con phố. Như thế, mỗi cây xăng sẽ bán được lượng xăng tương đối bằng nhau. Điểm cân bằng nên là như thế vì như thế sẽ đạt được tối đa lợi nhuận cho chủ cây xăng và khách hàng cũng không phải đi quá xa để mua xăng. Tuy nhiên, trong thực tế, chuyến đó không thể xảy xa. Không có sự can thiệp của chính phủ, mỗi chủ cây xăng sẽ luôn luôn muốn chuyển dần vào giữa con phố vì đó là nơi tiếp xúc với nhiều dân cư nhất. Như vậy, cuối cùng cả hai cây xăng sẽ được đặt ngay sát nhau và cùng ở giữa con phố. Hai cây xăng cạnh nhau là một sự lẵng phí quá không cần thiết. Và nó là kết quả của "invisible hand" của Adam Smith. Một cách khá rõ rằng là đó không phải là một kết quả đẹp. Và nếu như đưa vào vị thế "chỉ có một trung điểm", hai chủ cây xăng sẽ làm gì? Nash nói rằng vì ngay từ đầu họ thay đổi chiến thuật chung, kết quả sẽ dẫn đến chẳng ai có gì. Hay như một vị dụ khác. Với một trò chơi có hai người chia nhau 2 cái bánh. Họ đều được quyền lựa chọn số phần bánh mà họ muốn (1 chiếc, 2 chiếc, nửa chiếc ). Biết rằng nếu tổng số bánh hai người muốn nhiều hơn 2 cái, cả hai sẽ chẳng được gì. Trong trò chơi này, rõ ràng cả hai người sẽ cùng cố gắng lấy được càng nhiều bánh càng tốt. Nếu người thứ nhất chọn cả hai cái, người thứ hai sẽ làm gì? Tất nhiên nếu người thứ hai chọn 0, kết quả hiển nhiên rằng người 1 kết thúc trò chơi với một cái bụng căng tròn, trong khi người 2 nhịn đói. Vậy khi người hai không muộn nhịn đói và chọn bất cứ một phần bánh nào khác 0, tổng số bánh cả hai người muốn sẽ lớn hơn 2 và vì vậy, cả hai người phải nhịn đói. Trong cả hai trường hợp, người 2 đều không được gì cả, vậy người 2 sẽ làm gì? Trong đời sống thực, người 2 chắc chắn sẽ không muốn để người 1 "vui hưởng thái bình" một mình. Như vậy, kết quả sẽ là 0 cho cả hai, một kết quả không đẹp một chút nào. Vậy mỗi người nên làm gì? Làm một phép toán lớp 1 cho ta biết mỗi người chỉ nên đòi hỏi một chiếc bánh thôi, và như vậy, cả hai sẽ cùng có cái ăn. Kinh tế hiện đại gọi đó là "Nash Equilibrium". Hiển nhiên một trong hai người thay đổi lượng bánh mình muốn sẽ đem lại 0 cho cả hai. Trong cuộc sống hiện tại, vấn đề sẽ không phải là chia 2 cái bánh cho 2 người. Nó sẽ phức tạp hơn nhiều khi ta xét đến những tài nguyên thiên nhiên quanh ta (cụ thể là commom resources). Với một hồ cá đầy, nông dân trong vùng ai cũng muốn bắt một ít cho bữa tối. Nếu tất cả cùng biết hạn chế sự "thèm cá" của mình và bắt không nhiều hơn ông hàng xóm, cá trong hồ sẽ có cơ hội để sinh sôi nảy nở. Tuy nhiên, nếu một người thay đổi thói quen thường ngày bằng cách bắt nhiều hơn một con cá, hàng xóm của ông ta cũng sẽ muốn bắt thêm một con. Hàng xóm của ông hàng xóm cũng vậy. Kết quả là tất cả sẽ lao ra đánh bắt tùy í, vớt cạn cá trong hồ. Chỉ một thời gian ngắn, chắc chắn sẽ chẳng còn con nào cho bất kì ai. [...]... chuyển động Brown trong l thuyết xác suất hiện đại Sau này đã có hàng ngàn công trình nghiên cứu và mở rộng phạm vi l thuyết, ứng dụng của tính ngẫu nhiên TTCK Từ đây ngành xác suất đã bước sang l nh vực ứng dụng rộng rãi mới phát triển rất nhanh chóng Trò chơi? L thuyết quan trọng khác có tên l L thuyết trò chơi (LTTC), có nguồn gốc từ sự xung đột l i ích trên TTCK, thuộc về công lao của nhà toán học... có liên kết hay thỏa hiệp (eg 2 tên 0 được liên l c với nhau) best strategy cho mỗi tên l khai, và như thế mỗi tên sẽ phải bóc l ch 1 năm, còn best strategy cho cả nhóm l cả hai cùng câm như hến, và mỗi tên chỉ bị tạm giam 3 tháng Mô hình của Nash được coi l mô hình mẫu l tuởng, vì các assumptions như người chơi phải đi cùng một l c, các thông tin về payoff l common knowledge L thuyết trò chơi. .. Đó l điểm yếu thứ nhất mà mỗi khi nói đến L Thuyết trò chơi, những người chống l i ông đều đem ra bàn luận Thứ hai, trò chơi của Nash đã vô tình, nếu ai không để ý kĩ có thể không nhận ra, trói buộc người chơi phải chơi đến cùng Theo Nash, người chơi hoặc chấp nhận giữ nguyên chiến l ợc và nhận phần của mình, hoặc thay đổi chiển l ợc để rồi mất tất cả Tuy nhiên, khi tồn tại một người chơi (có thể l ... phức tạp hơn, ví dụ như mô hình trò chơi với thông tin không đầy đủ của John Harsanyi (ví dụ khi chơi bài, mỗi nguời đuợc chia các quân bài riêng, không ai biết bài của ai), trò chơi nhiều bước (nguời chơi thay nhau đi), trò chơi l p l i (chơi cùng một trò trong nhiều l n) Đặc biệt những trò như chơi bài (với thông tin không đầy đủ) phức tạp hơn rất nhiều những trò như chơi cờ, khi tất cả mọi thông tin... cũng chính l l do l p trình cho máy tình chơi bài khó hơn nhiều so với máy tính chơi cờ Nói tóm l i mô hình của Game Theory mà thực tế một chút l chưa thể giải quyết đuợc với công cụ toán và máy tính hiện tại, do đó những ứng dụng của Game Theory mới chỉ dừng l i ở các mô hình l tuởng mà thôi Ðặc tính ngẫu nhiên và l thuyết trò chơi Ngày nay thị trường chứng khoán (TTCK) tập trung được coi l quá... khác Bài toán đặt ra l cần sắp xếp tối ưu quy trình sản xuất để hoàn thiện M sản phẩm này trong thời gian sớm nhất Đó l một trong những ví dụ của ứng dụng Toán học trong Kinh tế , mà L thuyết Trò chơi cũng l một phần trong Vận trù học và l thuyết Tối ưu hóa của Toán học Các vị dụ và bài toán nhỏ ở trên chỉ để minh họa cho l thuyết trò chơi Vấn đề mà Nash cố gắng giải quyết l trường hợp N-person... tự ý rút ra khỏi trò chơi để đem l i l i nhuận cho họ, hoặc ít nhất l không thiệt thòi gì, thì l thuyết trò chơi trở thành vô nghĩa Để hiểu rõ thêm hai điều l luận trên, thử ngẫm l i ví dụ về 2 cây xăng trên một con phố đã nói ở trên Trong ví dụ, hai chủ cây xăng đã không hợp tác với nhau, hành động theo ý riêng của mình Tuy nhiên nếu họ gặp nhau và cùng thỏa thuận về địa thế và l i ích của mỗi người,... vẫn chỉ l người dân Mĩ phải chịu thiệt thòi, khi mà họ không còn thể nào mua được rẻ nữa L c có, trong thị trường Mĩ sẽ xuất hiện một l ợng, gọi l Dead Weight Loss, mà Mĩ không thể thu về được Tóm l i, kẻ thay đổi chiến thuật, phá vớ thế cân bằng, l kẻ thua thiệt nhiều nhất! III Sự chưa đầy đủ của Nash Như chúng ta đã biết từ hai phần trước, Nash và l thuyết kinh tế của ông, L Thuyết Trò Chơi, chủ... đi quá 25M để mua xăng , đây l một ví dụ nhỏ để minh họa cho L thuyết trò chơi mà Nash nghiên cứu Tất nhiên l ông nghiên cứu rất rộng và l n hơn nhiều , nó gồm rất nhiều bài toán nhỏ và l n để xây dựng nên l thuyết của mình Ở Việt Nam chúng ta cũng có một ngành toán học rất phát triển mà đứng đầu l Giáo sư Hoàng Tụy (nguyên Viện trưởng Viện toán học Việt nam), đó l chuyên ngành Vận trù học ... Technology), ông đã l m quen được với một sinh viên khoa Vật l , Alica, người sau này đã trở thành vợ ông Với trò chơi cuộc đời, Nash quả thật l may mắn khi l thuyết của ông sai Khi ông phải nhập viện với chứng tâm thần hoang tưởng, người ta cho phép vợ ông li dị Nếu l c đó Alica, và cả trường Priceton nữa, bỏ rơi người đã phá vỡ thế cân bằng, quả thật ,ông khó có thể có được ngày hôm nay Mặc dù Alica . rút ra khỏi trò chơi để đem l i l i nhuận cho họ, hoặc ít nhất l không thiệt thòi gì, thì l thuyết trò chơi trở thành vô nghĩa. Để hiểu rõ thêm hai điều l luận trên, thử ngẫm l i ví dụ. l một ví dụ nhỏ để minh họa cho L thuyết trò chơi mà Nash nghiên cứu . Tất nhiên l ông nghiên cứu rất rộng và l n hơn nhiều , nó gồm rất nhiều bài toán nhỏ và l n để xây dựng nên l thuyết. nói đến L Thuyết trò chơi, những người chống l i ông đều đem ra bàn luận. Thứ hai, trò chơi của Nash đã vô tình, nếu ai không để ý kĩ có thể không nhận ra, trói buộc người chơi phải chơi đến