1. Trang chủ
  2. » Giáo án - Bài giảng

Đề TS10_TP Hà Nội từ 2007 đến 2010 (có DA)

13 310 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 13
Dung lượng 674 KB

Nội dung

CÁC ĐỀ TS 10 HÀ NỘI SỞ GIÁO DỤC VÀ ĐÀO TẠO TP HÀ NỘI ĐỀ TUYỂN SINH VÀO LỚP 10 THPT NĂM HỌC 2007-2008 MÔN TOÁN Bài 1: (2,5 điểm) Cho biểu thức 3 6 4 1 1 1 x x P x x x − = + − − − + 1. Rút gọn biểu thức P 2. Tìm x để 1 2 P < Bài 2: (2,5 điểm) Giải bài toán sau bằng cách lập phương trình Một người đi xe đạp từ A đến B cách nhau 24km. Khi từ B trở về A người đó tăng vận tốc thêm 4km/h so với lúc đi, vì vậy thời gian về ít hơn thời gian đi 30 phút. Tính vận tốc của xe đạp khi đi từ A đến B. Bài 3: (1 điểm) Cho phương trình 2 0x bx c + + = 1. Giải phương trình khi b= -3 và c=2 2. Tìm b,c để phương trình đã cho có hai nghiệm phân biệt và tích của chúng bằng 1 Bài 4: (3,5 điểm) Cho đường tròn (O; R) tiếp xúc với đường thẳng d tại A. Trên d lấy điểm H không trùng với điểm A và AH < R. Qua H kẻ đường thẳng vuông góc với d, đường thẳng này cắt đường tròn tại hai điểm E và B ( E nằm giữa B và H) 1. Chứng minh góc ABE bằng góc EAH và tam giác ABH đồng dạng với tam giác EAH. 2. Lấy điểm C trên d sao cho H là trung điểm của đoạn AC, đường thẳng CE cắt AB tại K. Chứng minh AHEK là tứ giác nội tiếp. 3. Xác định vị trí điểm H để 3AB R= . 1 Bài 5: (0,5 điểm) Cho đường thẳng y = (m-1) x + 2 Tìm m để khoảng cách từ gốc tọa độ đến đường thẳng đó là lớn nhất. Gợi ý một phương án bài giải đề thi tuyển sinh lớp 10 THPT- Hà Nội Năm học 2007-2008 Bài 1: P= 1. Kết quả rút gọn với điều kiện xác định của biểu thức P là 2. Yêu cầu . Đối chiếu với điều kiện xác định của P có kết quả cần tìm là Bài 2: Gọi vận tốc khi đi là x (đơn vị tính km/h, điều kiện là x>0) ta có phương trình . Giải ra ta có nghiệm x=12(km/h) Bài 3: 1. Khi b=-3, c= 2 phương trình x 2 -3x+2=0 có nghiệm là x=1, x=2 2. Điều kiện cần tìm là Bài 4:1. vì cùng chắn cung AE. Do đó tam giác ABH và EHA đồng dạng. 2. nên hay . Vậy tứ giác AHEK là nội tiếp đường tròn đường kính AE. 3. M là trung điểm EB thì OM vuông góc BE, OM=AH. Ta có 2 đều cạnh R. Vậy AH= OM= Bài 5: Đường thẳng y = (m-1)x+2 mx= y+x-2đi qua điểm cố định A(0;2). Do đố OA=2. Khoảng cách lớn nhất từ gốc tọa độ đến đường thẳng d là OA=2, xảy ra khi d vuông góc với OA hay hệ số góc đường thẳng d là 0 tức là m-1. KỲ THI TUYỂN SINH LỚP 10 THPT HÀ NỘI (2008-2009) – ĐỀ CHÍNH THỨC Môn: Toán Ngày thi: 18 – 6 - 2008 Bài 1 ( 2,5 điểm ) Cho biểu thức: 1) Rút gọn P 2) Tìm giá trị của P khi x = 4 3 3) Tìm x để Bài 2 ( 2,5 điểm ) Giải bài toán sau bằng cách lập phương trình: Tháng thứ nhất hai tổ sản xuất được 900 chi tiết máy. Tháng tjhứ hai tổ I vươt mức 15% và tổ II vượt mức 10% so với tháng thứ nhất, vì vậy hai tổ đã sản xuất được 1010 chi tiết máy. Hỏi tháng thứ nhất mỗi tổ sản xuất được bao nhiêu chi tiết máy? Bài 3 ( 3,5 điểm ) Cho parabol (P): và đường thẳng (d): y = mx + 1 1) Chứng minh với mọi giá trị cả m đường thẳng (d) luôn cắt parabol (P) tại hai điểm phân biệt. 2) Gọi A, B là hai giao điểm của (d) và (P). Tính diện tích tam giác OAB theo m (O là gốc tọa độ) Bài IV (3,5 điểm ) Cho đường tròn (O) có đường kính AB = 2R và E là điểm bất kì trên đường tròn đó (E khác A và B). Đường phân giác góc AEB cắt đoạn thẳng AB tại F và cắt đường tròn (O) tại điểm thứ hai là K. 1) Chứng minh tam giác KAF đồng dạng với tam giác KEA 2) Gọi I là giao điểm của đường trung trực đoạn EF với OE, chứng minh đường tròn (I) bán kính IE tiếp xúc với đường tròn (O) tại E và tiếp xúc với đường thẳng AB tại F. 3) Chứng minh MN // AB, trong đó M và N lần lượt là giao điểm thứ hai của AE, BE với đường tròn (I). 4) Tính giá trị nhỏ nhất của chu vi tam giác KPQ theo R khi E chuyển động trên đường tròn (O), với P là giao điểm của NF và AK; Q là giao điểm của MF và BK. 4 Bài V ( 0,5 điểm ) Tìm giá trị nhỏ nhất của biểu thức A, biết: LỜI GIẢI Bài 1. Cho biểu thức a) Rút gọn P b) Tính giá trị của P khi x = 4. Với x = 4 thì c) Tìm x để ĐKXĐ: x > 0 (1) Đặt ; điều kiện t > 0. Phương trình (1) ; Giải phương trình ta được hoặc ( thỏa mãn điều kiện ) +) Với x = 9 5 +) Với Bài 2: Giải bài toán bằng cách lập phương trình Gọi số chi tiết máy tổ thứ nhất làm được trong tháng đầu là x ( x N*; x<900; đơn vị: chi tiết máy) Số chi tiết máy tổ thứ hai làm được trong tháng đầu là 900-x (chi tiết máy) Tháng thứ hai tổ I làm vượt mức 15% so với tháng thứ nhất nên tổ I làm được 115% . x=1,15. x ( chi tiết máy ) Tháng thứ hai tổ II làm vượt mức 10% so với tháng thứ nhất nên tổ II làm được 110%(900-x)=1, 1(900-x) (chi tiết máy) Tháng thứ hai cả hai tổ làm được 1010 chi tiết máy nên ta có phương trình: 1,15. x + 1,1. (900-x) = 1010 1,15.x + 1,1.900 – 1,1.x = 1010 0,05.x = 20 x = 400 ( thỏa mãn điều kiện ) Vậy tháng thứ nhất tổ I sản xuất được 400 chi tiết máy tổ II sản xuất được 900-400=500 chi tiết máy. Bài 3: Cho Parabol (P) và đường thẳng (d) y=mx+1 1) Xét phương trình hoành độ giao điểm (d) và (P): (*) 6 với mọi m (*) luôn có hai nghiệm phân biệt với mọi giá trị của m (d) luôn cắt (P) tại hai điểm phân biệt với mọi giá trị của m. 2) Gọi A,B là hai giao điểm của (d) và (P). Tính diện tích tam giác OAB theo m (O là gốc tọa độ) SỞ GIÁO DỤC VÀ ĐÀO TẠO HÀ NỘI ––––––––––– ĐỀ CHÍNH THỨC KỲ THI TUYỂN SINH VÀO LỚP 10 THPT Năm học 2009-2010 Môn thi: Toán Ngày thi: 24 tháng 6 năm 2009 Thời gian làm bài: 120 phút C©u I. (2,5 điểm) Cho biểu thức: víi , x A x x x x x = + + ≥ ≠ − − + 1 1 0 4 4 2 2 1. Rút gọn biểu thức A. 2. Tính giá trị của biểu thức A khi x = 25 . 3. Tìm giá trị của x để A − = 1 3 . C©u II. (2,5 điểm) Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình 7 Hai tổ sản xuất cùng may một loại áo. Nếu tổ thứ nhất may trong 3 ngày, tổ thứ hai may trong 5 ngày thì cả hai tổ may được 1310 chiếc áo. Biết rằng trong một ngày tổ thứ nhất may được nhiều hơn tổ thứ hai là 10 chiếc áo. Hỏi mỗi tổ trong một ngày may được bao nhiêu chiếc áo? C©u III. (1,0 điểm) Cho phương trình (ẩn x): ( ) x m x m− + + + = 2 2 2 1 2 0 1. Giải phương trình đã cho khi m = 1. 2. Tìm giá trị của m để phương trình đã cho có 2 nghiệm phân biệt ,x x 1 2 thoả mãn hệ thức: x x+ = 2 2 1 2 10 C©u IV. (3,5 điểm) Cho đường tròn (O, R) và điểm A nằm bên ngoài đường tròn. Kẻ các tiếp tuyến AB, AC với đường tròn (B, C là các tiếp điểm) 1. Chứng minh ABOC là tứ giác nội tiếp. 2. Gọi E là giao điểm của BC và OA. Chứng minh BE vuông góc với OA và OE.OA = R 2 . 3. Trên cung nhỏ BC của đường tròn (O, R) lấy điểm K bất kỳ (K khác B, C). Tiếp tuyến tại K của đường tròn (O, R) cắt AB, AC theo thứ tự tại P, Q. Chứng minh tam giác APQ có chu vi không đổi khi K chuyển động trên cung nhỏ BC. 4. Đường thẳng qua O và vuông góc với OA cắt các đường thẳng AB, AC theo thứ tự tại M, N. Chứng minh rằng PM QN MN+ ≥ . C©u V. (0,5 điểm) Giải phương trình: ( ) x x x x x x− + + + = + + + 2 2 3 2 1 1 1 2 2 1 4 4 2 . HẾT 8 HƯỚNG DẪN GIẢI ĐỀ THI VÀO LỚP 10 THPT (2009-2010) CÂU NỘI DUNG ĐIỂM 1 Bài toán về phân thức đại số 2,5đ 1.1 Rút gọn biểu thức Đặt = ⇒ = ≥ ≠; ,y x x y y y 2 0 2 Khi đó = + + − + − y A y y y 2 2 1 1 2 2 4 0,5 ( ) ( ) ( ) + − = + + − − − + + = = = − + − − y y y y y y y y y y y y y y y 2 2 2 2 2 2 2 2 4 4 4 2 2 2 2 2 4 Suy ra = − x A x 2 0,5 1.2 Tính giá trị A khi =x 25 Khi = ⇒ = = − x A 25 5 25 3 25 2 0,5 1.3 Tìm x khi − =A 1 3 ( ) − − = ⇔ = − ⇔ = − + ⇔ = ⇔ = ⇔ = ⇔ = ≥ ≠tho¶ m·n ®k 0,x 4 y A y y y y y x x x 1 1 3 2 3 3 2 4 2 1 1 1 2 2 4 1 2 Giải bài toán bằng cách lập phương trình hay hệ phương trình 2.5đ * Gọi:  Số áo tổ  may được trong 1 ngày là x ( ) ∈ >¥ ;x x 10  Số áo tổ  may được trong 1 ngày là y ( ) ∈ ≥¥ ,y y 0 0,5 * Chênh lệch số áo trong 1 ngày giữa 2 tổ là: − =x y 10 * Tổng số áo tổ  may trong 3 ngày, tổ  may trong 5 ngày là: + =x y3 5 1310 2 9 ( ) ( ) = − − =   ⇔   + = + − =   = −  ⇔  − =  =  ⇔  =  Ta cã hÖ tho¶ m·n ®iÒu kiÖn y x x y x y x x y x x x y 10 10 3 5 1310 3 5 10 1310 10 8 50 1310 170 160 Kết luận: Mỗi ngày tổ  may được 170(áo), tổ  may được 160(áo) 3 Phương trình bậc hai 1đ 3.1 Khi = m 1 ta có phương trình: − + =x x 2 4 3 0 Tổng hệ số + + = a b c 0 ⇒ Phương trình có 2 nghiệm = = =; c x x a 1 2 1 3 0,5 3.2 * Biệt thức ( ) ( ) ∆ = + − + = −' x m m m 2 2 1 2 2 1 Phương trình có 2 nghiệm ≤x x 1 2 ⇔ ∆ = − ≥ ⇔ ≥' x m m 1 2 1 0 2 0,25 * Khi đó, theo định lý viét ( ) −  + = = +     = = +   b x x m a c x x m a 1 2 2 1 2 2 1 2 ( ) ( ) ( ) + = + − = + − + = + Ta cã x x x x x x m m m m 2 2 2 1 2 1 2 1 2 2 2 2 2 4 1 2 2 2 8 ( ) *Theo yªu cÇu: lo¹i x x m m m m m m + = ⇔ + = =  ⇔ + − = ⇔  = −  2 2 2 1 2 2 10 2 8 10 1 2 8 10 0 5 Kết luận: Vậy m =1 là giá trị cần tìm. 0,25 4 Hình học 3,5 4.1 1đ 10 [...]... AB, AC là 2 tiếp tuyến của (O) · ⇒· ACO = ABO = 90° ⇒ Tứ giác ABOC nội tiếp được 0,5 4.2 1đ * AB, AC là 2 tiếp tuyến của (O) ⇒ AB = AC Ngoài ra OC = R OB = Suy ra OA là trung trực của BC ⇒ OA ⊥ BE * ∆OAB vuông tại B, đường cao BE Áp dụng hệ thức liên hệ các cạnh ta có: OE.OA = OB 2 = R 2 4.3 0,5 0,5 1đ * PB, PK là 2 tiếp tuyến kẻ từ P đến (O) nên PK = PB tương tự ta cũng có QK = QC * Cộng vế ta có: PK... MN 2 4 B®t C«si ( MP + QN ) 2 ⇔ MN ≤ MP + QN ( ®pcm ) Cách 2 ⇔ MN 2 = 4 MP.QN ≤ 0,5 * Gọi H là giao điểm của OA và (O), tiếp tuyến tại H với (O) cắt AM, AN tại X, Y Các tam giác NOY có các đường cao kẻ từ O, Y bằng nhau ( = R) ⇒ ∆NOY cân đỉnh N ⇒ NO = NY Tương tự ta cũng có MO = MX ⇒ MN = MX + NY Khi đó: XY + BM + CN = XB + BM + YC + CN = XM + YN = MN * Mặt khác ( **) MP + NQ = MB + BP + QC + CN = MB . CÁC ĐỀ TS 10 HÀ NỘI SỞ GIÁO DỤC VÀ ĐÀO TẠO TP HÀ NỘI ĐỀ TUYỂN SINH VÀO LỚP 10 THPT NĂM HỌC 2007- 2008 MÔN TOÁN Bài 1: (2,5 điểm) Cho biểu thức 3. xe đạp từ A đến B cách nhau 24km. Khi từ B trở về A người đó tăng vận tốc thêm 4km/h so với lúc đi, vì vậy thời gian về ít hơn thời gian đi 30 phút. Tính vận tốc của xe đạp khi đi từ A đến B. Bài. cách lớn nhất từ gốc tọa độ đến đường thẳng d là OA=2, xảy ra khi d vuông góc với OA hay hệ số góc đường thẳng d là 0 tức là m-1. KỲ THI TUYỂN SINH LỚP 10 THPT HÀ NỘI (2008-2009) – ĐỀ CHÍNH THỨC Môn:

Ngày đăng: 10/07/2014, 23:00

w