1. Trang chủ
  2. » Giáo án - Bài giảng

Ts 10-tỉnh Ninh Bình (có HD +DA)

25 138 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 25
Dung lượng 915 KB

Nội dung

    !" # $%&'  ()*+,-. / 01"2/0 "3 456)*+,-34 473 89 : ;<)*+,-8+= : /  >/ ? @/  0/ 3AB /  4/ 3!B 49 : ;<;8;C+DE-D   (;)F+G+H8)*+,-.3/0I1J'24 4&-KI;;)F+G+;L;.$1>M21A>A24 4&,+,)F+NKIO-;)N-;P1!>28% :  ;)F+G+;8J%+DE-D (9! (IQ. + − = − − + a 3 3 a M 2 a 6 2 a 6  a 0;a 9.≥ ≠ 4RC+$4 4&-;$8+',<IS+#4 !4&-+',<+=;$8+',<+=*4&-+',< +=;84 (9#4 (;)F+,T;)F+JUV3 R4&OJWXXH ;)F+,T45(;,=+V>YV(JZH[H\]4 456^(;U+_+V4(Q++'V] %+94 456^(;I`J-,=+V1(J%+,a+V24 5b;I`J-,=+?(1bJ%+,a+(24YVb JZH[b\c4 2(Q+Q+'(b]c% : X;)F+,T4 I2(Q+V(4V]3Vb4Vc34 M 56)*+,-./ # "d/ 0/0 34 )+He9J8 M./ # "d/ 0/0 3 ⇔1/ "/"!21/ "/"#23    #" M $%&' 1!;2 4&-;J= : /';<'IQ − 2 1 a) x 25 +b) x 2 456= : )*+,- 2 3 5 x y 3 2 1 x y  + =     − =    1 KM;2 ()*+,-./ 0 /" "!3 456)*+,-34 4(Q+,S+)*+,-8+= : +',<4 !4&-+= : )*+,-Jf+I-)*+'+= :  9 : +',<?`4 (9!1!;2 (+'V(%+\V>b% : ;,=V(>;)F+,T ;)F+JUb([(\]>;)F+G+b[;)F+,T;)F+JU b(\c4 (Q+,S+. 4&+'V(;g+H\++']b(4 4&Q+'V(c% : X;)F+,T4 !4V(9+'+8]Vc4 (9#41KM;2 4(Q+,S+ 4 4 3 3 a b a b ab+ ≥ + KI4 4&-+= : +=)*+,-.1 0#21/ 0 23d/ 4 )+He9J8 (9#. 4 ( ) ( ) 4 4 3 3 2 2 2 a b a b ab a b a ab b 0 + ≥ + ⇔ − + + ≥ 41 0#21/ 0 23d/ ⇔1/" 2 01 " /2 3 2 2 y 0 xy 2y 0 x 2 y 2x 0 y 2x  =  − =    = ⇔ ⇔    − =   =  b;88'+h.1>2>1 > 2>1 >A 2 2 ĐỀ THI TUYỂN SINH VÀO LỚP 10 TỈNH NINH BÌNH  M" i $%.&' &F+I.MC Câu 1.1 K;2(YIj`.3 /0I12 2Y;@;g+IX+<IX,=RD56UD I2X,S+;g<Y12;L;V1>!24&-Ik;g< Y124 Câu 2.1 K;2(IQ 1 1 A 1 a 1 a 1 = − − − + 2&-j/';<,C+IQV4 I2&-'Y+=Y;+',<IQVlY+=4 Câu 3.1 K;2 $l^,l+-_j8HhUISH 4&U;lH' \^,l+4XX+,l+^,l+=  +6H^,l+;M-HhU^,l+k+= M 4 Câu 4.1!K;2 (;)F+,T1m>R24&Ol;Pn+;)F+,TJWX X9IhPVKP(1VK('X;>PVoR2;)F+,T1m24 2(Q+Q+'PVm(lX;)Nl;)F+,T4 I2&Vm[;)F+,T1m2\>;)F+G+LP++ V[(\b4&Q+'VmbP-+-D(Q+4 25+;m(Pb>p+;P(bm>7 ,+;Vb4(Q+>p>7G++4 (9M.1K;2 (YH)*+/K8f+IS+4&-+',<?`IQ. 2 2 1 1 P 1 1 x y     = − −  ÷ ÷     )+He9J8 (9#. -k. 3 7 p  b m P (  V 2bq,g4 I2(Q+Q+'mPb-I-,Q+'mVPb -_j4 2p+;;)F+,++'mP=p,r94 7,+;Vb=7,+;mP4 (Q++'mP9,7;)F+=;L,r9 pKpK7G++4 (9M. 2 2 2 2 2 2 2 2 2 1 1 1 1 1 P 1 1 1 x y x y x y 1 1 2 1 P 1 x y xy x y 2 P 1 xy     = − − = − − +  ÷ ÷       = − + + +  ÷   = + &8./03,. ( ) 2 2 x y 2xy 1 *+ + = $sJ' 2 2 2xy x y (**)≤ + &O1t21tt2, 1 xy 4 ≤ b;8. 2 P 1 1 8 9 xy = + ≥ + = b`IS+/6,J /33KM4 Ej+',<?`PuJ/33KM 4 Đề thi vào 10 Năm học 2006 - 2007 Bài 1: (2 đ) Cho phơng trình bậc hai: x 2 x 3a 1 = 0 (có ẩn là x) Tìm a để phơng trình nhận x = 1 là nghiệm? Bài 2: (4 đ) Cho biểu thức 3 3 x x x A x 3 x x 3 x x 1 + = + + + + a. Rút gọn A với x 3 b. Tính giá trị của A khi x = 61 9 2 5+ Bài 3: (4 đ) Cho hàm số y = mx 2 a. Xác định m, biết đồ thị hàm số cắt đờng thẳng y = 3x + 2 tại điểm M có hoành độ bằng 2 b. Với m tìm đợc ở câu a, chứng minh rằng khi đó đồ thị hàm số và đờng thẳng d có phơng trình y = kx 1 luôn cắt nhau tại 2 điểm phân biệt A, B với mọi giá thị của k c. Gọi x 1 ; x 2 tơng ứng là hoành độ của A và B. Chứng minh rằng 1 2 x x 2 Bài 4: (7 đ) Cho đờng tròn (O; R). Điểm M nằm ngoài đờng tròn. Vẽ các tiếp tuyến MC, MD (C, D là các tiếp điểm) và cát tuyến MAB đi qua tâm O của đòng tròn (A ở giữa M và B) a. Chứng minh: MC 2 =MA.MB b. Gọi K là giao điểm của BD và CA. Chứng minh 4 điểm B, C, M, K cùng thuộc một đờng tròn c. Tính độ dài MK theo R khi ã 0 CMD 60= Bài 5: (1,5 đ) Tìm a, b hữu tỉ để phơng trình x 2 + ax + b = 0 nhận x = 2 1 là nghiệm. Bài 6: (1,5 đ) Tìm x, y nguyên thoả mãn phơng trình x + x 2 + x 3 = 4y + 4y 2 Hết H ớng dẫn Bài 5: 5 Ph¬ng tr×nh x 2 + ax + b = 0 nhËn x = 2 1− lµ nghiÖm ( ) ( ) ( ) 2 2 1 a 2 1 b 0 3 2 2 a 2 a b 0 a 2 0 a 2 2 a 2 a b 3 a b 3 0 b 1 ⇔ − + − + = ⇔ − + − + = − = =   ⇔ − = − − ⇔ ⇔   − − = = −   Bµi 6. x + x 2 + x 3 = 4y + 4y 2 ⇔ (x + 1)( 2 x +1) = (1 + 2y) 2 (1) §Æt (x + 1; 2 x + 1) = d (d ∈ N * ) Ta cã x + 1 M d ⇒ 2 x + x M d ⇒ ( 2 x + x) – ( 2 x + 1) M d ⇒ x – 1 M d ⇒ (x + 1) – (x – 1) M d ⇒ 2 M d (2) Tõ (1) ta cã x + 1 vµ x 2 +1 ®Òu lµ sè lÎ (3) Tõ (2) vµ (3) ta cã d = 1 (4) ( ) ( ) 2 2 2 2 2 2 x 1 m Tõ (1) vµ (4) (m;n Z) x 1 n n x 1 n x 1 Tõ x 1 n n x n x 1 hoÆc n x 1 n x 1 x 0 4y 4y 0 y 0 hoÆc y = -1 + =  ⇒ ∈  + =  − = − = −   + = ⇔ − + = ⇔   + = + = −   ⇒ = ⇒ + = ⇒ = 6 Đề thi TS 10 Năm học 2007 2008 (Thời gian 120 phút) Bài 1: (3 đ) 1. Giải các phơng trình và hệ phơng trình a. 2x 2 = 0 b. 2 x 7x + 6 = 0 c. 2x y 4 x x 2y 1 + = + = 2. Rút gọn các biểu thức sau: a. 2 xy x y A x y xy x xy y = + + với x > 0; y > 0; x y b. B 4 2 3 4 2 3= + + c. 546 84 42 253 4 63 + Bài 2: (2 đ) Cho hai đờng thẳng có phơng trình: y = mx 2 (d 1 ) và 3x + my = 5 (d 2 ) a. Khi m =2, xác định hệ số góc và tìm tọa độ giao điểm của hai đờng thẳng. b. Khi (d 1 ) và (d 2 ) cắt nhau tại M(x 0 ; y 0 ), tìm m để x 0 + y 0 = 1 - 2 2 m m 3+ c. Tìm m để giao điểm của (d 1 ) và (d 2 ) có hoành độ dơng còn tung độ thì âm. Bài 3: (3 đ) Cho nửa đờng tròn (O;R) đờng kính AB. Trên nửa đờng tròn lấy hai điểm C, D (C thuộc cung AD) sao cho CD = R. Qua C kẻ đờng thẳng vuông góc với CD cắt AB ở M. Tiếp tuyến của (O;R) tại A và B cắt CD lần lợt tại E và F, AC cắt BD ở K. a. Chứng minh rằng tứ giác AECM nội tiếp và tam giác EMF là tam giác vuông. b. Xác định tâm và bán kính đờng trón ngoại tiếp tam giác KCD. c. Tìm vị trí của dây CD sao cho diện tích tam giác KAB lớn nhất. Bài 4: (1 đ) Hai máy bơm cùng bơm nớc vào một cái bể cạn (không có nớc), sau 4 giờ thì bể đầy. Biết rằng nếu để máy thứ nhất bơm đợc một nửa bể, sau đó máy thứ hai bơm tiếp (không dùng máy thứ nhất nữa) thì sau 9 giờ bể sẽ đầy. Hỏi nếu mỗi máy bơm riêng thì mất thời gian bao lâu sẽ đầy bể nớc. Bài 5: (1 đ) Tìm các số hữu tỉ x và y sao cho 12 3 y 3 x 3 + = Hớng dẫn Bài 2: 7 c. ( ) ( ) ( ) 546 84 42 253 4 63 42 13 2 42 253 2.6 7 42 7 6 6 7 1 7 6 6 7 6 7 1 7 6 1 + = + = + = + = Bài 3: H I M O K F E D C B A b. ã ã 0 0 AKB 60 AIB 120= = (Góc ở tâm và góc nội tiếp cùng chắn một cung) Tứ giác OCID nội tiếp ã ã 0 OCI ODI 90= = ID = OD.tg30 0 = R 3 3 c. KCD KBA 2 KCD KBA KCD KBA S CD 1 S 4S S AB 4 = = = ữ KBA S lớn nhất KCD S lớn nhất KH lớn nhất H là điểm chính giữa cung lớn CD của đờng tròn ngoại tiếp tam giác KCD KCD cân KBA cân CD//AB 8 Bµi 5 12 3 y 3 x 3− + = ⇔ x y 2 3− = − ( ) ( ) x y * x y 2 xy 2 3 **  >  ⇔  + − = −   ( ) ( ) ( ) 2 1 ** x y 2 2 xy 3 x y 2 4xy 3 4 3xy⇔ + − = − ⇒ + − = + − ⇒ 3xy h÷u tØ §Æt 3xy = m víi m ∈ Q thay vµo (1) ta cã: m x y 2 2 3 3 ⇔ + − = − ( ) 3 3 x 2m 3 0 xy 3 2 x y 2 2m 3 4 3 x y 2 0 1 x y 2 y 2  =   − = =    ⇔ + − = − ⇒ ⇔ ⇔    + − =    + = =    (v× theo (*) th× x > y) 9 Đề thi tuyển sinh lớp 10 THPT năm học 2008 - 2009 Môn toán Thời gian: 120 phút Câu 1: (2,0 điểm) 1. Giải phơng trình: 2x + 4 = 0 2. Giải hệ phơng trình sau: x y 4 2x y 6 + = + = 3. Cho phơng trình ẩn x sau: x 2 6x + m +1 = 0 a) Giải phơng trình khi m = 7. b) Tìm m để phơng trình có hai nghiệm x 1 ; x 2 thỏa mãn: 2 2 1 2 x x 26+ = . Câu 2: (1,5 điểm) Rút gọn các biểu thức sau: 1. 1 1 A 5 2 5 2 = + + 2. ( ) 2 B 2008 2009= 3. C = 1 1 1 1 2 2 3 2008 2009 + + + + + + Câu 3: (2,0 điểm) Một thửa ruộng hình chữ nhật có chu vi là 300m. Tính diện tích của thửa ruộng, biết rằng nếu chiều dài giảm đi 3 lần và chiều rộng tăng gấp 2 lần thì chu vi của thửa ruộng không thay đổi. Câu 4: (3,0 điểm) Cho đờng tròn tâm O bán kính R và đờng thẳng d cố định không giao nhau. Từ điểm M thuộc d, kẻ hai tiếp tuyến MA, MB với đờng tròn (O; R) (A, B là các tiếp điểm). 1. Gọi I là giao điểm của MO và cung nhỏ AB của đờng tròn. Chứng minh I là tâm đờng tròn nội tiếp tam giác MAB. 2. Cho biết MA = R 3 , tính diện tích hình phẳng bị giới hạn bởi hai tiếp tuyến MA, MB và cung nhỏ AB của đờng tròn (O; R). 3. Chứng minh rằng khi M thay đổi trên d thì đờng thẳng AB luôn đi qua một điểm cố định. Câu 5: (1,5 điểm) 1. Cho 3 3 A 26 15 3 26 15 3 = + + . Chứng minh rằng A = 4. 2. Cho x, y, z là ba số dơng. Chứng minh rằng 3 3 3 x y z xy yz xz y z x + + + + . 3. Tìm a N để phơng trình x 2 a 2 x + a + 1 = 0 có nghiệm nguyên. 10 [...]... delta bng 4 (tha món) * Vi a > 2 Xột hiu: Suy ra: Mt khỏc Do ú: Gia hai s chớnh phng liờn tip khụng cú s chớnh phng no nờn khụng l s chớnh phng khi a>2 KL: a = 2 13 14 15 16 17 TUYN SINH VO 10 THPT TNH NINH BèNH 18 Năm học 2009- 2010 Cõu 1 (2,5 im): 1 Gii phng trỡnh: 4x = 3x + 4 2 Thc hin phộp tớnh: A = 5 12 4 3 + 48 3 Gii h phng trỡnh sau: 1 1 x y =1 3 + 4 = 5 x y Cõu 2 (2,0 im): Cho phng trỡnh:... 5 (1,5 im): 1 Cho ba s a,b,c > 0 Chng minh rng: 1 1 1 1 + 3 3 + 3 3 3 a + b + abc b + c + abc c + a + abc abc 3 2 Tỡm x, y nguyờn tho món: x + y + xy + 2 = x2 + y2 GI í THI TUYN SINH VO 10 THPT TNH NINH BèNH NM HC 2009 - 2010 Cõu 1: 1 4x = 3x + 4 x = 4 2 A = 5 12 - 4 3 + 48 = 10 3 - 4 3 + 4 3 = 10 3 3 k : x 0; y 0 1 x 3 + x 1 4 4 7 7 =1 x y = 4 x = 9 y = 2 y 4 3 + 4 = 5 1 = 9 1... R 3 => H l giao im ca (A; ) v ng thng (d) 2 Chỳ ý : Bi toỏn cú hai nghim hỡnh: => AH = AC/2 = AC/2 = Cõu 5: 1 Vi a > 0; b > 0; c > 0 1 1 1 1 + 3 + 3 3 3 3 a + b + abc b + c + abc c + a + abc abc 3 3 HD: ta cú a + b + abc = (a+b)(a2 + b2 - ab) + abc (a+b)(2ab - ab)+ abc ( vỡ (a-b)2 0 vi mi a, b => a2 + b2 2ab) => a3 + b3 + abc ab(a+b) + abc = ab( a+b+c) 1 1 Vỡ a, b, c > 0 => a 3 + b 3 + abc (a... minh 5 điểm M, B, O, A, D nằm trên một đờng tròn 3) Tìm M trên đờng thẳng d để tam giác AOC đều Hãy chỉ ra cách xác định M Giải phơng trình 2(x2 -3x +2) = 3 x 3 + 8 27-5-2010 Cam ta tp thờ S Pham tnh Ninh Binh . =   =  b;88'+h.1>2>1 > 2>1 >A 2 2 ĐỀ THI TUYỂN SINH VÀO LỚP 10 TỈNH NINH BÌNH  M" i $%.&' &F+I.MC Câu 1.1. không là số chính phương khi a>2. KL: a = 2. 12 13 14 15 16 TUYỂN SINH VÀO 10 THPT TỈNH NINH BÌNH 17 N¨m häc 2009- 2010 Câu 1 (2,5 điểm): 1. Giải phương trình: 4x = 3x + 4 2. Thực hiện. + 2. Tìm x, y nguyên thoả mãn: x + y + xy + 2 = x 2 + y 2 GỢI Ý ĐỀ THI TUYỂN SINH VÀO 10 THPT TỈNH NINH BÌNH NĂM HỌC 2009 - 2010 Câu 1: 1. 4x = 3x + 4 <=> x = 4 2. A = 5 12 - 4 3 + 48 = 10 3

Ngày đăng: 10/07/2014, 13:00

w