1. Trang chủ
  2. » Giáo án - Bài giảng

Toán vào 10 Trường Lam Sơn 1

3 173 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 3
Dung lượng 264,5 KB

Nội dung

Sở gd và đt thanh hoá Kỳ thi tuyển sinh thpt chuyên lam sơn năm học: 2009 - 2010 Đề chính thức Môn: Toán (Dành cho thí sinh thi vào lớp chuyên Toán) Thời gian làm bài: 150 phút (không kể thời gian giao đề) Ngày thi: 19 tháng 6 năm 2009 Câu 1: (2,0 điểm) 1. Cho số x ( ) 0; > xRx thoả mãn điều kiện: x 2 + 2 1 x = 7 Tính giá trị các biểu thức: A = x 3 + 3 1 x và B = x 5 + 5 1 x 2. Gii h phng trỡnh: 1 1 2 2 1 1 2 2 y x x y + = + = Câu 2: (2,0 điểm) Cho phơng trình: 2 0ax bx c+ + = ( 0a ) có hai nghiệm 1 2 ,x x thoả mãn điều kiện: 1 2 0 2x x .Tìm giá trị lớn nhất của biểu thức: 2 2 2 2 3 2 a ab b Q a ab ac + = + Câu 3: (2,0 điểm) 1. Giải phơng trình: 2x + 2009 + y + 2010z = )( 2 1 zyx ++ 2. Tìm tất cả các số nguyên tố p để 4p 2 +1 và 6p 2 +1 cũng là số nguyên tố. Câu 4: (3,0 điểm) 1. Cho hình vuông ABCD có hai đờng chéo cắt nhau tại E . Một đờng thẳng qua A , cắt cạnh BC tại M và cắt đờng thẳng CD tại N . Gọi K là giao điểm của các đờng thẳng EM và BN . Chứng minh rằng: CK BN . 2. Cho ng trũn (O) bỏn kớnh R=1 v m t im A sao cho OA= 2 .V cỏc tip tuyn AB, AC vi ng trũn (O) (B, C l cỏc ti p im).Mt gúc xOy cú s o bng 0 45 cú cnh Ox ct on thng AB ti D v cnh Oy ct on thng AC ti E. Chng minh rng: 1222 < DE . Câu 5: (1,0 điểm) Cho biểu thức bdacdcbaP +++++= 2222 ,trong đó 1 = bcad . Chứng minh rằng: 3P . Hết Sở giáo dục và đào Kỳ thi tuyển vào lớp 10 chuyên lam sơn Thanh Hoá năm học 2009-2010 Đáp án đề thi chính thức Môn: Toán ( Dành cho thí sinh thi vào lớp chuyên Toán) Ngày thi: 19 tháng 6 năm 2009 (Đáp án này gồm 04 trang) Câu ý Nội dung Điểm 1 1 Từ giả thiết suy ra: (x + x 1 ) 2 = 9 x + x 1 = 3 (do x > 0) 21 = (x + x 1 )(x 2 + 2 1 x ) = (x 3 + 3 1 x ) + (x + x 1 ) A = x 3 + 3 1 x =18 7.18 = (x 2 + 2 1 x )(x 3 + 3 1 x ) = (x 5 + 5 1 x ) + (x + x 1 ) B = x 5 + 5 1 x = 7.18 - 3 = 123 0.25 0.25 0.25 0.25 2 T h suy ra x y y x 1 2 11 2 1 +=+ (2) Nu yx 11 > thỡ xy 1 2 1 2 > nờn (2) xy ra khi v ch khi x=y th v o h ta gii c x=1, y=1 0.5 0.5 2 Theo Viét, ta có: 1 2 b x x a + = , 1 2 . c x x a = . Khi đó 2 2 2 2 3 2 a ab b Q a ab ac + = + = 2 2 3. 2 b b a a b c a a + ữ + ( Vì a 0) = 2 1 2 1 2 1 2 1 2 2 3( ) ( ) 2 ( ) x x x x x x x x + + + + + + + Vì 1 2 0 2x x nên 2 1 1 2 x x x và 2 2 4x 2 2 1 2 1 2 4x x x x+ + ( ) 2 1 2 1 2 3 4x x x x + + Do đó 1 2 1 2 1 2 1 2 2 3( ) 3 4 3 2 ( ) x x x x Q x x x x + + + + = + + + Đẳng thức xảy ra khi và chỉ khi 1 2 2x x= = hoặc 1 2 0, 2x x= = Tức là 4 4 4 2 2 0 0 b a c c b a a b a b c a c a = = = = = = = = Vậy max Q =3 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 3 1 ĐK: x 2, y - 2009, z 2010 Phơng trình đã cho tơng đơng với: x + y + z = 2 2x +2 2009+y +2 2010z ( 2x - 1) 2 + ( 2009+y - 1) 2 + ( 2010z - 1) 2 = 0 0.25 0.25 0.25 D C N A BI K M E O C B D E M A x x y . 0) 21 = (x + x 1 )(x 2 + 2 1 x ) = (x 3 + 3 1 x ) + (x + x 1 ) A = x 3 + 3 1 x =18 7 .18 = (x 2 + 2 1 x )(x 3 + 3 1 x ) = (x 5 + 5 1 x ) + (x + x 1 ) B = x 5 + 5 1 x = 7 .18 - 3 = 12 3 0.25 0.25 0.25 0.25 2 T. = 2 1 2 1 2 1 2 1 2 2 3( ) ( ) 2 ( ) x x x x x x x x + + + + + + + Vì 1 2 0 2x x nên 2 1 1 2 x x x và 2 2 4x 2 2 1 2 1 2 4x x x x+ + ( ) 2 1 2 1 2 3 4x x x x + + Do đó 1 2 1 2 1. ra x y y x 1 2 11 2 1 +=+ (2) Nu yx 11 > thỡ xy 1 2 1 2 > nờn (2) xy ra khi v ch khi x=y th v o h ta gii c x =1, y =1 0.5 0.5 2 Theo Viét, ta có: 1 2 b x x a + = , 1 2 . c x x a = . Khi

Ngày đăng: 10/07/2014, 07:00

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w