TÀI LIỆU ÔN THI TỐT NGHIỆP THPT MÔN TOÁN CHƯƠNG TRÌNH CHUẨN I – PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm) Câu I (3,0 điểm) Cho hàm số 3 2 2 3 1y x x= − − 1. Khảo sát sự biến thiên và vẽ đồ thị của hàm số đã cho. 2. Dựa vào đồ thị (C), xác định k để phương trình sau có 3 nghiệm thực phân biệt: 3 2 2 3 1 0x x k− + − = Câu II (3,0 điểm) 1. Giải phương trình 2 1 2 6 1 1 2 2 x x x + − + = ÷ ( ) x∈¡ . 2. Tính tích phân ( ) 2 0 3 2 cosI x xdx π = − ∫ . 3. Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số ( ) 2 2 lnf x x x= − trên đoạn 1 ;1 e . Câu III (1,0 điểm) Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a. Cạnh bên SA vuông góc với mặt đáy (ABC) và 2SB a= . Tính thể tích khối chóp S.ABC theo a. II – PHẦN RIÊNG (3,0 điểm) 1. Theo chương trình Chuẩn: Câu IVa (2,0 điểm) Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng: 1 : 3 2 2 x t d y t z t = + = + = + và 5 2 ' ': 2 ' 1 2 ' x t d y t z t = − = − + = + 1. Chứng minh d và d’ chéo nhau. 2. Viết phương trình mặt phẳng ( ) α chứa đường thẳng d và song song với đường thẳng d’. Câu Va (1,0 điểm) Giải phương trình sau trên tập số phức 4 2 20 0z z− − = Hết ĐÁP SỐ Câu I.2) 0 1k < < Câu II. 1) 1 2, 2 x x= = 2) 3 5 2 I π = − 3) ( ) 1 ;1 max 2 e f x = ; ( ) 1 ;1 1 min ln 2 2 e f x = + Câu III. 3 4 a V = Câu IV. 2) ( ) :3 4 5 1 0x y z α − + − = Câu V. 5, 2z z i= ± = ± Giáo viên: Hoàng Nhựt Sơn ĐỀ 1 TÀI LIỆU ÔN THI TỐT NGHIỆP THPT MÔN TOÁN CHƯƠNG TRÌNH CHUẨN LUYỆN TẬP Các bài toán liên quan đến ứng dụng của đạo hàm và vẽ đồ thị của hàm số Dạng 1. Chiều biến thiên của hàm số Ghi nhớ 1. Hàm số 3 2 y ax bx cx d= + + + đồng biến (nghịch biến) trên R khi và chỉ khi ' 0,y x R≥ ∀ ∈ ( ) ' 0,y x R≤ ∀ ∈ 2. Hàm số ax b y cx d + = + đồng biến (nghịch biến) trên từng khoảng xác định của nó khi và chỉ khi ' 0y > ( ) ' 0y < trên từng khoảng xác định của nó. Lưu ý: 2 0, 0 0 ax bx c x R a + + ≥ ∀ ∈ > ⇔ ∆ ≤ ; 2 0, 0 0 ax bx c x R a + + ≤ ∀ ∈ < ⇔ ∆ ≤ Bài 1. Cho hàm số ( ) 3 2 1 2 6 3 3 y x mx m x= − + + + . Xác định m để hàm số đã cho đồng biến trên R. Bài 2. Cho hàm số ( ) ( ) 3 2 1 3 3 5y m x x m x= − + + − + Xác định m để hàm số đã cho nghịch biến trên tập xác định. Bài 3. Cho hàm số 3 1 x m y x + − = − . Xác định m để hàm số đã cho đồng biến trên từng khoảng xác định của nó. Dạng 2. Cực trị Ghi nhớ Cho hàm số ( ) y f x= xác định và liên tục trên khoảng ( ) ;a b , và điểm ( ) 0 ;x a b∈ . + Hàm số ( ) y f x= đạt cực đại tại điểm 0 x khi ( ) ( ) 0 0 ' 0 " 0 f x f x = < + Hàm số ( ) y f x= đạt cực tiểu tại điểm 0 x khi ( ) ( ) 0 0 ' 0 " 0 f x f x = > Bài 1. Cho hàm số ( ) 3 2 1 3y x m x= − + + . Xác định m để hàm số đã cho luôn có cực đại và cực tiểu. Bài 2. Cho hàm số 3 3y x mx m= − + − . Xác định m để hàm số đã cho đạt cực tiểu tại điểm 1x = − . Bài 3. Cho hàm số 3 2 3 5 2y mx x x= + + + . Xác định m để hàm số đã cho đạt cực đại tại điểm 2x = . Bài 4. Cho hàm số ( ) 4 2 2 9 10y mx m x= + − + (1) Tìm m để hàm số (1) có ba điểm cực trị. Giáo viên: Hoàng Nhựt Sơn TÀI LIỆU ÔN THI TỐT NGHIỆP THPT MÔN TOÁN CHƯƠNG TRÌNH CHUẨN I – PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm) Câu I (3,0 điểm) Cho hàm số 4 2 2 1y x x= − − có đồ thị (C). 1. Khảo sát sự biến thiên và vẽ đồ thị của hàm số đã cho. 2. Viết phương trình tiếp tuyến của đồ thị (C) tại điểm có hoành độ 0 x là nghiệm của phương trình " 1 0y + = . Câu II (3,0 điểm) 1. Giải phương trình: 2.25 7.10 5.4 0 x x x − + = . 2. Tính tích phân: 2 1 ln e x x I dx x + = ∫ . 3. Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số ( ) 2 x f x x e= trên đoạn [ ] 1;1− . Câu III (1,0 điểm) Cho hình chóp tứ giác đều S.ABCD có đáy ABCD là hình vuông cạnh a; các mặt bên tạo với mặt đáy một góc bằng 0 60 . Tính thể tích khối chóp S.ABCD theo a. II – PHẦN RIÊNG (3,0 điểm) 1. Theo chương trình Chuẩn: Câu IVa (2,0 điểm) Trong không gian Oxyz, cho hai điểm ( ) ( ) 1;4;3 , 3;0;5A B − . 1. Viết phương trình chính tắc của đường thẳng d đi qua hai điểm A, B. 2. Viết phương trình mặt cầu (S) có đường kính AB. Câu Va (1,0 điểm) Tìm môđun của số phức ( ) 3 5 6 1z i i= − + + Hết ĐÁP SỐ Câu I. 2) 3 11 2 16 y x= − − ; 3 11 2 16 y x= − Câu II. 1) 0, 1x x= = . 2) 2 2 e I = 3) [ ] ( ) 1;1 max f x e − = ; [ ] ( ) 1;1 min 0f x − = Câu III. 3 3 6 a V = Câu IV. 1) 1 4 3 2 2 1 x y z− − − = = − 2) ( ) ( ) ( ) 2 2 2 1 2 4 9x y z+ + − + − = Câu V. 5z = Giáo viên: Hoàng Nhựt Sơn ĐỀ 2 TÀI LIỆU ÔN THI TỐT NGHIỆP THPT MÔN TOÁN CHƯƠNG TRÌNH CHUẨN LUYỆN TẬP Vấn đề 1. Phương trình mũ Ghi nhớ 1. Phương trình mũ cơ bản log x a a b x b= ⇔ = ( ) 0, 1, 0a a b> ≠ > 2. Đưa về cùng cơ số ( ) ( ) ( ) ( ) A x B x a a A x B x= ⇔ = 3. Đặt ẩn phụ Chọn ẩn phụ x t a= thích hợp. Lưu ý: Các cặp số nghịch đảo: 3 và 1 3 ; 2 3+ và 2 3− ; 10 3+ và 10 3− ; 4. Lôgarit hóa ( ) ( ) ( ) ( ) ( ) ( ) log log log f x g x f x g x a a a a b a b f x g x b= ⇔ = ⇔ = Bài 1. Giải các phương trình sau: 1) 2 4 1 3 2 2 x x x− + − = 2) 1 2 3 3 3 351 x x x+ + + + = 3) 1 2 1 2 2 2 2 3 3 3 x x x x x x+ + − − + + = + + 4) 2 6 10 1 5 5 x x x − − = ÷ 5) ( ) ( ) 4 1 2 3 3 2 2 3 2 2 x x− + + = − 6) 12 6 4.3 3.2 x x x + = + Bài 2. Giải các phương trình sau: 1) 9 10.3 9 0 x x − + = 2) 16 20.4 64 0 x x − + = 3) 2 2 4 6.2 8 0 x x − + = 4) 6.9 13.6 6.4 0 x x x − + = 5) 25 15.10 50.4 0 x x x − + = 6) 2 2 2 15.25 34.15 15.9 0 x x x − + = 7) 1 5 5 6 x x− + = 8) 1 3 6.3 9 x x− + = 9) ( ) ( ) 2 3 2 3 4 x x + + − = Bài 3. Giải các phương trình sau: 1) 1 3 4 x− = 2) 2 1 1 3 5 x x− − = 3) 2 5 .3 1 x x = 4) 1 2 1 4.9 3 2 x x− + = 5) 2 2 2 .3 1,5 x x x− = 6) 2 1 1 5 .2 50 x x x − + = Vấn đề 2. Bất phương trình mũ Ghi nhớ Giải bất phương trình: ( ) ( ) f x g x a a> 1. Trường hợp cơ số: 1a > ( ) ( ) ( ) ( ) f x g x a a f x g x> ⇔ > 2. Trường hợp cơ số: 0 1a < < ( ) ( ) ( ) ( ) f x g x a a f x g x> ⇔ < Giải các bất phương trình sau: 1) 4 5 1 2 2 x x− + > 2) 2 2 4 2 1 1 3 3 x x x+ − + ≥ ÷ ÷ 3) 1 2 3 3 3 117 x x x+ + + + ≤ 4) ( ) ( ) 1 2 8 3 2 2 3 2 2 x x+ + + ≥ − 5) 1 12 3 4 x x x + < + 6) 25 30.5 125 0 x x − + > 7) 2 2 1 1 4 1028.2 4096 0 x x+ + − + ≥ 8) 25 12.15 27.9 0 x x x − + ≤ 9) 1 3 6.3 9 x x− + < 10) ( ) ( ) 2 3 2 3 4 x x + + − > Giáo viên: Hoàng Nhựt Sơn TÀI LIỆU ÔN THI TỐT NGHIỆP THPT MÔN TOÁN CHƯƠNG TRÌNH CHUẨN I – PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm) Câu I (3,0 điểm) Cho hàm số 2 1 1 x y x − = − . 1. Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho. 2. Tìm tất cả các giá trị của tham số m để đường thẳng : 5d y mx= + cắt đồ thị (C) tại hai điểm phân biệt. Câu II (3,0 điểm) 1. Giải bất phương trình: 1 3 2 2 17 x x+ − + ≥ . 2. Tính tích phân: 1 ln 5 4ln e e x x I dx x − = ∫ 3. Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số ( ) 3 2 5 7 2f x x x x= − + − trên đoạn [ ] 0;2 . Câu III (1,0 điểm) Cho hình lăng trụ đứng ABC.A’B’C’ có đáy ABC là tam giác cân tại A, 2 ,AB a BC a= = . Gọi M là trung điểm của B’C’, 4AM a= . Tính theo a thể tích của khối chóp M.ABC. II – PHẦN RIÊNG (3,0 điểm) 1. Theo chương trình Chuẩn: Câu IVa (2,0 điểm) Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng ( ) : 5 6 0x y z α + − + = và đường thẳng d có phương trình 1 2 3 4 x t y t z t = − = + = + 1. Tìm tọa độ giao điểm của đường thẳng d và mặt phẳng ( ) α . 2. Viết phương trình mặt phẳng ( ) β chứa đường thẳng d và vuông góc với mặt phẳng ( ) α . Câu Va (1,0 điểm) Trong mặt phẳng tọa độ Oxy, tìm tập hợp điểm biểu diễn các số phức z thỏa mãn điều kiện 3 2 1z i− + ≤ . Hết ĐÁP SỐ Câu I 2) ( ) ( ) { } ; 9 1; \ 0m∈ −∞ − ∪ − +∞ Câu II 1) ( ] [ ) 1 3;T = −∞ − ∪ +∞ 2) 19 30 I = − 3) [ ] ( ) 0;2 max 1f x = ; [ ] ( ) 0;2 min 2f x = − Câu III 3 7 15 24 a V = Câu IVa 1) ( ) 2; 1;3I − 2) ( ) : 5 0x z β + − = Câu Va Tập hợp điểm biểu diễn các số phức z là hình tròn tâm ( ) 3; 2I − bán kính 1R = . Giáo viên: Hoàng Nhựt Sơn ĐỀ 3 TÀI LIỆU ÔN THI TỐT NGHIỆP THPT MÔN TOÁN CHƯƠNG TRÌNH CHUẨN LUYỆN TẬP Vấn đề 1. Hình chiếu vuông góc của điểm trên mặt phẳng. Tọa độ điểm đối xứng với điểm qua mặt phẳng. Ghi nhớ Cho mặt phẳng ( ) α và điểm M. + Xác định tọa độ điểm H là hình chiếu vuông góc của điểm M trên mặt phẳng ( ) α . + Tìm tọa độ điểm M’ đối xứng với điểm M qua mặt phẳng ( ) α . Phương pháp: → Viết phương trình đường thẳng ∆ đi qua điểm M và vuông góc với mặt phẳng ( ) α . → Điểm H là giao điểm của d và ( ) α → Điểm M’ đối xứng với M qua ( ) α . Suy ra H là trung điểm của MM’. Áp dụng: Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng ( ) :3 2 6 0x y z α − + − = và điểm ( ) 5;1;3M . a) Tìm tọa độ điểm H là hình chiếu vuông góc của điểm M trên mặt phẳng ( ) α . b) Tìm tọa độ điểm M’ đối xứng với điểm M qua mặt phẳng ( ) α . Vấn đề 2. Hình chiếu vuông góc của điểm trên đường thẳng. Tọa độ điểm đối xứng với điểm qua đường thẳng. Ghi nhớ Cho đường thẳng d và điểm M. + Xác định tọa độ điểm H là hình chiếu vuông góc của điểm M trên đường thẳng d. + Tìm tọa độ điểm M’ đối xứng với điểm M qua đường thẳng d. Phương pháp: → Viết phương trình mặt phẳng ( ) α đi qua điểm M và vuông góc với đường thẳng d. → Điểm H là giao điểm của d và ( ) α → Điểm M’ đối xứng với M qua d. Suy ra H là trung điểm của MM’. Áp dụng: Trong không gian với hệ tọa độ Oxyz, cho đường thẳng 1 : 2 3 2 x t d y t z t = + = + = − và điểm ( ) 3;2;1M − . a) Tìm tọa độ điểm H là hình chiếu vuông góc của điểm M trên đường thẳng d. b) Tìm tọa độ điểm M’ đối xứng với điểm M qua đường thẳng d. Giáo viên: Hoàng Nhựt Sơn M ∆ H • • • M’ α M d H ••• M’ α TÀI LIỆU ÔN THI TỐT NGHIỆP THPT MÔN TOÁN CHƯƠNG TRÌNH CHUẨN I – PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm) Câu I (3,0 điểm) Cho hàm số 3 3 1y x x= − + − . 1. Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho. 2. Tìm m để phương trình sau có 3 nghiệm thực phân biệt 3 2 3 log 1 0x x m− + + = . Câu II (3,0 điểm) 1. Giải phương trình: ( ) ( ) ( ) 3 3 1 3 log 1 log 9 2 log 2 1x x x− = − + + 2. Tính tích phân: ( ) 4 2 0 sin cos cos 2I x x xdx π = + ∫ 3. Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số ( ) 3 x f x x e= − trên đoạn [ ] 1;3 . Câu III (1,0 điểm) Cho hình lăng trụ đứng tam giác ABC.A’B’C’ có đáy ABC là tam giác vuông tại A.Cho biết tam giác AB’C’ là tam giác đều cạnh 2a. Tính thể tích của khối lăng trụ ABC.A’B’C’ theo a. II – PHẦN RIÊNG (3,0 điểm) 1. Theo chương trình Chuẩn: Câu IVa (2,0 điểm) Trong không gian với hệ tọa độ Oxyz, cho bốn điểm ( ) ( ) ( ) ( ) 3;1;6 , 1;1;0 , 4;0;0 , 2;1;1A B C D − − 1. Viết phương trình mặt phẳng (BCD). Suy ra ABCD là một tứ diện. 2. Viết phương trình mặt cầu (S) đi qua bốn điểm A, B, C, D. Câu Va (1,0 điểm) Giải phương trình 2 2 2 5 0z z− + = trên tập số phức. Hết ĐÁP SỐ Câu I. 2) 1 2 8 m< < Câu II. 1) 2x = 2) 3 4 I = 3) [ ] ( ) 1;3 max 3ln3 3f x = − , [ ] ( ) 3 1;3 min 9f x e= − Câu III. 3 2V a= Câu IVa. 1) ( ) : 5 4 0BCD x y z+ + − = 2) 2 2 2 2 4 6 8 0x y z x y z+ + − + − − = Câu Va. 1 2 1 3 1 3 , 2 2 2 2 z i z i= + = − Giáo viên: Hoàng Nhựt Sơn ĐỀ 4 TÀI LIỆU ÔN THI TỐT NGHIỆP THPT MÔN TOÁN CHƯƠNG TRÌNH CHUẨN LUYỆN TẬP Vấn đề Tích phân Bảng nguyên hàm của một số hàm số thường gặp (1) 0dx C= ∫ (2) dx x C= + ∫ (3) ( ) 1 1 1 1 x dx x C α α α α + = + ≠ − + ∫ (4) 1 lndx x C x = + ∫ (5) x x e dx e C= + ∫ (6) ( ) 0, 1 ln x x a a dx C a a a = + > ≠ ∫ (7) cos sinx dx x C= + ∫ (8) sin cosxdx x C= − + ∫ (9) 2 1 tan cos dx x C x = + ∫ (10) 2 1 cot sin dx x C x = − + ∫ Dạng 1. Dùng phương pháp đổi biến 1) ( ) 6 2 0 1 sin cosI x xdx π = + ∫ 2) ( ) 2 2 0 2 osx sin xI c dx π = + ∫ 3) 2 1 2 ln e x I dx x + = ∫ 4) 3 1 1 ln e x I dx x + = ∫ 5) 2 1 ln e e I dx x x = ∫ 6) ln8 ln3 1 x x e I dx e = + ∫ 7) 2 1 1 x x e I dx e = − ∫ 8) 1 2 0 1 x I dx x = + ∫ 9) 2 2 0 (2 1) 1I x x x dx= − − + ∫ 10) 2 2 0 sin 2 3 os x I dx c x π = + ∫ Dạng 2. Dùng phương pháp tích phân từng phần 1) 4 0 (2 1)sin 2I x xdx π = + ∫ 2) 4 0 ( 1)cos2I x xdx π = − ∫ 3) 1 0 (2 1) x I x e dx= − ∫ 4) 1 2 0 3 2 x x I dx e − = ∫ 5) 1 (2 1)ln e I x xdx= − ∫ 6) 1 0 ln( 1)I x dx= + ∫ Dạng 3. Tổng hợp 1) ( ) 2 sin 0 cos x I e x x dx π = + ∫ 2) ( ) 2 3 0 sin cos cosI x x x dx π = − ∫ 3) 1 1 ( )ln e I x xdx x = − ∫ 4) ( ) 1 2 0 ln 1x x dx+ ∫ Giáo viên: Hoàng Nhựt Sơn . 9 10.3 9 0 x x − + = 2) 16 20 .4 64 0 x x − + = 3) 2 2 4 6.2 8 0 x x − + = 4) 6.9 13.6 6 .4 0 x x x − + = 5) 25 15.10 50 .4 0 x x x − + = 6) 2 2 2 15.25 34. 15 15.9 0 x x x − + = 7) 1 5 5 6 x. III. 3 3 6 a V = Câu IV. 1) 1 4 3 2 2 1 x y z− − − = = − 2) ( ) ( ) ( ) 2 2 2 1 2 4 9x y z+ + − + − = Câu V. 5z = Giáo viên: Hoàng Nhựt Sơn ĐỀ 2 TÀI LIỆU ÔN THI TỐT NGHIỆP THPT MÔN TOÁN CHƯƠNG TRÌNH. = + Câu III. 3 4 a V = Câu IV. 2) ( ) :3 4 5 1 0x y z α − + − = Câu V. 5, 2z z i= ± = ± Giáo viên: Hoàng Nhựt Sơn ĐỀ 1 TÀI LIỆU ÔN THI TỐT NGHIỆP THPT MÔN TOÁN CHƯƠNG TRÌNH CHUẨN LUYỆN