1. Trang chủ
  2. » Giáo án - Bài giảng

50 ĐÈ THI hsg TOÁN 8

48 381 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 48
Dung lượng 1,19 MB

Nội dung

Đề thi HsG toán 8 đề số 1 Câu 1: Cho x = 2 2 2 2 b c a bc + ; y = 2 2 2 2 ( ) ( ) a b c b c a + Tính giá trị P = x + y + xy Câu 2: Giải phơng trình: a, 1 a b x+ = 1 a + 1 b + 1 x (x là ẩn số) b, 2 2 ( )(1 )b c a x a + + + 2 2 ( )(1 )c a b x b + + + 2 2 ( )(1 )a b c x c + + = 0 (a,b,c là hằng số và đôi một khác nhau) Câu 3: Xác định các số a, b biết: 3 (3 1) ( 1) x x + + = 3 ( 1) a x + + 2 ( 1) b x + Câu 4: Chứng minh phơng trình: 2x 2 4y = 10 không có nghiệm nguyên. Câu 5: Cho ABC; AB = 3AC Tính tỷ số đờng cao xuất phát từ B và C Phạm Tuấn Anh - Trờng THCS Sơn Tiến Đề thi HsG toán 8 Đề số 2 Câu 1: Cho a,b,c thoả mãn: a b c c + = b c a a + = c a b b + Tính giá trị M = (1 + b a )(1 + c b )(1 + a c ) Câu 2: Xác định a, b để f(x) = 6x 4 7x 3 + ax 2 + 3x +2 Chia hết cho y(x) = x 2 x + b Câu 3: Giải PT: a, (x-4) (x-5) (x-6) (x-7) = 1680. b, 4x 2 + 4y 4xy +5y 2 + 1 = 0 Câu 4: Tìm giá trị lớn nhất của phân số mà tử số là một số có 3 chữ số mà mẫu là tổng các chữ số của nó. Câu 5: Cho ABC cân tại A, trên AB lấy D, trên AC lấy E sao cho: AD = EC = DE = CB. a, Nếu AB > 2BC. Tính góc à A của ABCV b, Nếu AB < BC. Tính góc à A của HBCV . hết Phạm Tuấn Anh - Trờng THCS Sơn Tiến Đề thi HsG toán 8 đề số 3 Câu 1: Phân tích thành nhân tử: a, a 3 + b 3 + c 3 3abc b, (x-y) 3 +(y-z) 3 + (z-x) 3 Câu 2: Cho A = 2 2 2 (1 ) 1 x x x + : 3 3 1 1 ( )( ) 1 1 x x x x x x + + + a, Rút gọn A b, Tìm A khi x= - 1 2 c, Tìm x để 2A = 1 Câu 3: a, Cho x+y+z = 3. Tìm giá trị nhỏ nhất của M = x 2 + y 2 + z 2 b, Tìm giá trị lớn nhất của P = 2 ( 10) x x + Câu 4: a, Cho a,b,c > 0, CMR: 1 < a a b+ + b b c+ + c c a+ < 2 b, Cho x,y 0 CMR: 2 2 x y + 2 2 y x x y + y x Câu 5: Cho ABCV đều có độ dài cạnh là a, kéo dài BC một đoạn CM =a a, Tính số đo các góc ACMV b, CMR: AM AB c, Kéo dài CA đoạn AN = a, kéo dài AB đoạn BP = a. CMR MNPV đều. Phạm Tuấn Anh - Trờng THCS Sơn Tiến Đề thi HsG toán 8 đề số 4 Câu 1: Phân tích thành nhân tử: a, a 8 + a 4 +1 b, a 10 + a 5 +1 Câu 2: a, Cho a+b+c = 0, Tính giá trị của biểu thức: A = 2 2 2 1 b c a+ + 2 2 2 1 c a b+ + 2 2 2 1 a b c+ b, Cho biểu thức: M = 2 2 3 2 15 x x x + + Rút gọn M + Tìm x Z để M đạt giá trị nguyên. Câu 3: a, Cho abc = 1 và a 3 > 36, CMR: 2 3 a + b 2 + c 2 > ab + bc + ca b, CMR: a 2 + b 2 +1 ab + a + b Câu 4: a, Tìm giá trị nhỏ nhất của A = 2x 2 + 2xy + y 2 - 2x + 2y +1 b, Cho a+b+c= 1, Tìm giá trị nhỏ nhất P = a 3 + b 3 + c 3 + a 2 (b+c) + b 2 (c+a) + c 2 (a+b) Câu 5: a, Tìm x,y,x Z biết: x 2 + 2y 2 + z 2 - 2xy 2y + 2z +2 = 0 b, Tìm nghiệm nguyên của PT: 6x + 15y + 10z = 3 Câu 6: Cho ABCV . H là trực tâm, đờng thẳng vuông góc với AB tại B, với AC tại C cắt nhau tại D. a, CMR: Tứ giác BDCH là hình bình hành. b, Nhận xét mối quan hệ giữa góc à A và à D của tứ giác ABDC. Phạm Tuấn Anh - Trờng THCS Sơn Tiến Đề thi HsG toán 8 Đề số 5 Câu 1: Phân tích thành nhân tử: a, (x 2 x +2) 2 + (x-2) 2 b, 6x 5 +15x 4 + 20x 3 +15x 2 + 6x +1 Câu 2: a, Cho a, b, c thoả mãn: a+b+c = 0 và a 2 + b 2 + c 2 = 14. Tính giá trị của A = a 4 + b 4 + c 4 b, Cho a, b, c 0. Tính giá trị của D = x 2003 + y 2003 + z 2003 Biết x,y,z thoả mãn: 2 2 2 2 2 2 x y z a b c + + + + = 2 2 x a + 2 2 y b + 2 2 z c Câu 3: a, Cho a,b > 0, CMR: 1 a + 1 b 4 a b+ b, Cho a,b,c,d > 0 CMR: a d d b + + d b b c + + b c c a + + c a a d + 0 Câu 4: a, Tìm giá trị lớn nhất: E = 2 2 2 2 x xy y x xy y + + + với x,y > 0 b, Tìm giá trị lớn nhất: M = 2 ( 1995) x x + với x > 0 Câu 5: a, Tìm nghiệm Z của PT: xy 4x = 35 5y b, Tìm nghiệm Z của PT: x 2 + x + 6 = y 2 Câu 6: Cho ABCV M là một điểm miền trong của ABCV . D, E, F là trung điểm AB, AC, BC; A, B, C là điểm đối xứng của M qua F, E, D. a, CMR: ABAB là hình bình hành. b, CMR: CC đi qua trung điểm của AA Phạm Tuấn Anh - Trờng THCS Sơn Tiến Đề thi HsG toán 8 Đề số 6 Câu 1: Cho a x y+ = 13 x z+ và 2 169 ( )x z+ = 27 ( )(2 )z y x y z + + Tính giá trị của biểu thức A = 3 2 2 12 17 2 2 a a a a + Câu 2: Cho x 2 x = 3, Tính giá trị của biểu thức M = x 4 - 2x 3 + 3x 2 - 2x + 2 Câu 3: a, Tìm giá trị nhỏ nhất của M = x(x+1)(x+2)(x+3) b, Cho x,y > 0 và x + y = 0, Tìm giá trị nhỏ nhất của N = 1 x + 1 y Câu 4: a, Cho 0 a, b, c 1 CMR: a 2 + b 2 + c 2 1+ a 2 b + b 2 c + c 2 a b, Cho 0 <a 0 <a 1 < < a 1997 CMR: 0 1 1997 2 5 8 1997 a a a a a a a + + + + + + + < 3 Câu 5: a,Tìm a để PT 4 3x = 5 a có nghiệm Z + b, Tìm nghiệm nguyên dơng của PT: 2 x x y z+ + + 2 y y x z+ + + 2 z z x y+ + = 3 4 Câu 6: Cho hình vuông ABCD, trên CD lấy M, nối M với A. Kẻ phân giác góc ã MAB cắt BC tại P, kẻ phân giác góc ã MAD cắt CD tại Q CMR PQ AM đề số 7 Phạm Tuấn Anh - Trờng THCS Sơn Tiến Đề thi HsG toán 8 Câu 1: Cho a, b, c khác nhau thoả mãn: 2 2 2 2 b c a bc + + 2 2 2 2 c a b ac + + 2 2 2 2 a b c ab + = 1 Thì hai phân thức có giá trị là 1 và 1 phân thức có giá trị là -1. Câu 2: Cho x, y, z > 0 và xyz = 1 Tìm giá trị lớn nhất A = 3 3 1 1x y+ + + 3 3 1 1y z+ + + 3 3 1 1z x+ + Câu 3: Cho M = a 5 5a 3 +4a với a Z a, Phân tích M thành nhân tử. b, CMR: M M 120 a Z Câu 4: Cho N 1, n N a, CMR: 1+ 2+ 3+ +n = ( 1) 2 n n + b, CMR: 1 2 +2 2 + 3 2 + +n 2 = ( 1)(2 1) 6 n n n+ + Câu 5: Tìm nghiệm nguyên của PT: x 2 = y(y+1)(y+2)(y+3) Câu 6: Giải BPT: 2 2 2 1 x x x + + + > 2 4 5 2 x x x + + + - 1 Câu 7: Cho 0 a, b, c 2 và a+b+c = 3 CMR: a 2 + b 2 + c 2 5 Câu 8: Cho hình chữ nhật ABCD có chiều dài BC gấp 2 lần chiều rộng CD, từ C kẻ Cx tạo với CD một góc 15 0 cắt AD tại E CMR: BCEV cân. đề số 8 Phạm Tuấn Anh - Trờng THCS Sơn Tiến Đề thi HsG toán 8 Câu 1: Cho A = 3 2 3 2 2 1 2 2 1 n n n n n + + + + a, Rút gọn A b, Nếu n Z thì A là phân số tối giản. Câu 2: Cho x, y > 0 và x+y = 1 Tìm giá trị lớn nhất của P = (1 - 2 1 x )(1 - 2 1 y ) Câu 3: a, Cho a, b ,c là độ dài 3 cạnh của 1 tam giác CMR: a 2 + b 2 + c 2 < 2(ab+bc+ca) b, Cho 0 a, b , c 1 CMR: a + b 2 +c 3 ab bc ca 1 Câu 4: Tìm x, y, z biết: x+yz = y+z-x = z+x-y = xyz Câu 5: Cho n Z và n 1 CMR: 1 3 + 2 3 +3 3 + +n 3 = 2 2 ( 1) 4 n n+ + Câu 6: Giải bất phơng trình: (x-1)(3x+2) > 3x(x+2) + 5 Câu 7: Chia tập N thành các nhóm: 1; (2,3); (4,5,6) , nhóm n gồm n số hạng. Tính tổng các số trong nhóm 94. Câu 8: Cho hình vuông ABCD. M, N là trung điểm AB, BC, K là giao điểm của CM và DN CMR: AK = BC đề số 9 Phạm Tuấn Anh - Trờng THCS Sơn Tiến Đề thi HsG toán 8 Câu 1: Cho M = a b c+ + b a c+ + c a b+ ; N = 2 a b c+ + 2 b a c+ + 2 c a b+ a, CMR: Nếu M = 1 thì N = 0 b, Nếu N = 0 thì có nhất thiết M = 1 không? Câu 2: Cho a, b, c > 0 và a+b+c = 2 CMR: 2 a b c+ + 2 b a c+ + 2 c a b+ 1 Câu 3: Cho x, y, z 0 và x + 5y = 1999; 2x + 3z = 9998 Tìm giá trị lớn nhất của M = x + y + z Câu 4: a, Tìm các số nguyên x để x 2 2x -14 là số chính phơng. b, Tìm các số ab sao cho ab a b là số nguyên tố Câu 5: Cho a, b, c, d là các sô nguyên dơng CMR: A = a a b c+ + + b a b d+ + + c b c d+ + + d a c d+ + không phải là số nguyên. Câu 6: Cho ABCV cân (AB=AC) trên AB lấy điểm M, trên phần kéo dài của AC về phía C lấy điểm N sao cho: BM = CN, vẽ hình bình hành BMNP CMR: BC PC Câu 7: Cho x, y thoả mãn: 2x 2 + 2 1 x + 2 4 y = 4 (x 0) Tìm x, y để xy đạt giá trị nhỏ nhất đề số 10 Phạm Tuấn Anh - Trờng THCS Sơn Tiến Đề thi HsG toán 8 Câu 1: Cho a, b, c > 0 và P = 3 2 2 a a ab b+ + + 3 2 2 b b bc c+ + + 3 2 2 c c ac a+ + Q = 3 2 2 b a ab b+ + + 3 2 2 c b bc c+ + + 3 2 2 a c ac a+ + a, CMR: P = Q b, CMR: P 3 a b c+ + Câu 2: Cho a, b, c thoả mãn a 2 + b 2 + c 2 = 1 CMR: abc + 2(1+a+b+c+ab+bc+ca) 0 Câu 3: CMR x, y Z thì: A = (x+y)(x+2y)(x+3y)(x+4y) + y 4 là số chính phơng. Câu 4: a, Tìm số tự nhiên m, n sao cho: m 2 + n 2 = m + n + 8 b, Tìm số nguyên nghiệm đúng: 4x 2 y = (x 2 +1)(x 2 +y 2 ) Câu 5: Tìm giá trị lớn nhất, giá trị nhỏ nhất: A = 2 4 3 1 x x + + Câu 6: Cho x = 2 2 2 2 b c a ab + ; y = 2 2 2 2 ( ) ( ) a b c b c a + Tính giá trị: M = 1 x y xy + Câu 7: Giải BPT: 1 x a x < (x là ẩn số) Câu 8: Cho ABCV , trên BC lấy M, N sao cho BM = MN = NC. Gọi D, E là trung điểm của AC, AB, P là giao của AM và BD. Gọi Q là giao của AN và CE. Tính PQ theo BC Đề số 11 Phạm Tuấn Anh - Trờng THCS Sơn Tiến [...]... x2 + y2) = (ax+by)2 CMR: a b = với x, y 0 x y c, Rút gọn: Phạm Tuấn Anh - Trờng THCS Sơn Tiến Đề thi HsG toán 8 A = (x -x+1)(x -x +1)(x -x +1)(x16-x8+1)(x32-x16+1) 2 4 2 8 4 Câu 2: a, Tìm số nguyên dơng n để n5+1 chia hết cho n3+1 b, Tìm các số a, b, c sao cho: ax3+bx2+c chia hết cho x+2 và chia cho x2-1 thi d x+5 c, Nếu n là tổng 2 số chính phơng thì n2 cũng là tổng 2 số chính phơng Câu 3: a, Cho A... của VABC Đề số 18 Câu 1: a 2 bc b 2 ac c 2 ab + + Rút gọn: M = (a + b)(a + c) (b + a )(b + c) (a + c)(a + b) Câu 2: Phạm Tuấn Anh - Trờng THCS Sơn Tiến Đề thi HsG toán 8 b +c a (a + b c)(a + c b) ;y= Cho: x = 2bc (a + b + c)(b + c a ) 2 2 2 Tính giá trị P = (x+y+xy+1)3 Câu 3: Cho 0 < a, b, c, d < 1 CMR có ít nhất một bất đẳng thức sai trong các bất đẳng thức sau: 2a(1-b) > 1 8c(1-d) > 1 3b(1-c)... Trung tuyến AI của VABC vuông góc với EF và AI = Câu 8: CMR: 21n + 4 là phân số tối giản (với n N) 14n + 3 đề số 17 Câu 1: Phân tích ra thừa số: a, (x+1)(x+3)(x+5)(x+7) +15 Phạm Tuấn Anh - Trờng THCS Sơn Tiến 1 EF 2 Đề thi HsG toán 8 b, x + 6x + 11x + 6 3 2 Câu 2: Cho x > 0 và x2 + 1 =7 x2 Tính giá trị của M = x5 + 1 x5 Câu 3: Cho x, y thoả mãn 5x2 + 8xy + 5y2 = 72 Tím giá trị lớn nhất, giá trị nhỏ nhất:... BC, CA a, CMR: VODE đồng dạng với VHAB b, Gọi G là trọng tâm của VABC CMR: O, G, H thẳng hàng Đề số 28 Câu 1: Rút gọn: A = x2 + y2 + z 2 , với x+y+z = 0 ( x z ) 2 + ( z x) 2 + ( x y ) 2 Câu 2: n7 + n2 + 1 a, CMR: M = 8 không tối giản n Z + n + n +1 Phạm Tuấn Anh - Trờng THCS Sơn Tiến Đề thi HsG toán 8 b, CMR: Nếu các chữ số a, b, c 0 thoả mãn: ab : bc = a:c Thì: abbb : bbbc = a:c Câu 3: a, Rút gọn:... số nguyên khác 0 CMR: Nếu : x2 yz = a Phạm Tuấn Anh - Trờng THCS Sơn Tiến Đề thi HsG toán 8 y zx = b z2 xy = c Thì ax+by+cz chia hết cho a+b+c 2 Câu 3: a, Cho n N, CMR: A = 10n + 18n 1 chia hết cho 27 b, CMR: n5m nm5 chia hết cho 30 với mọi m,n Z Câu 4: a, Tìm giá trị nhỏ nhất, giá trị lớn nhất của M = 4x + 3 x2 + 1 8 x 2 + 6 xy b, Tìm giá trị lớn nhất của: N = 2 2 x +y Câu 5: Cho a, b, c là số... Anh - Trờng THCS Sơn Tiến Đề thi HsG toán 8 Giải PT: x +1 x + 2 x + 3 x + 4 + = + 58 57 56 55 Câu 3: Tìm giá trị lớn nhất A= 1 1 1 + 3 3 + 3 (x, y, z > 0; xyz = 1) 3 x + y + 1 y + z + 1 z + x3 + 1 3 Câu 4: Tìm nghiệm nguyên của PT: x(x2+x+1) = 4y(y+1) Câu 5: Cho hình vuông ABCD cạnh là a Lấy M AC, kẻ ME AB, MF BC Tìm vị trí của M để S DEF nhỏ nhất Câu 6: à Cho VABC có à = 500 ; B = 200 Trên phân giác... Đề thi HsG toán 8 CMR: x y z = = với abc 0 a b c Câu 2: Cho abc 0 và CMR: x y z = = a + 2b + c 2a + b c 4a 4b + c a b c = = x + 2 y + z 2x + y z 4x 4 y + z Câu 3: Cho a, b, c là 3 số dơng và nhỏ hơn 1 CMR: Trong 3 số: (1-a)b; (1-b)c; và (1-c)a không đồng thời lớn hơn 1 4 Câu 4: Cho x3 + y3 + 3(x2+y2) + 4xy + 4 = 0 và xy > 0 Tìm giá trị lớn nhất A = 1 1 + x y Câu 5: a, CMR PT: 3x5 x3 + 6x2 18x... Phạm Tuấn Anh - Trờng THCS Sơn Tiến Đề thi HsG toán 8 Câu 2: a, Cho a+b = ab Tính (a3+b3-a3b3)3 + 27a6b6 b, Cho a, b thoả mãn: 2a b + =2 a +b ab Tìm các giá trị có thể của N = 3a b a + 5b Câu 3: a, Tìm số tự nhiên n để n4+4 là số nguyên tố b, Tìm số nguyên tố p sao cho 2p+1 là lập phơng của số tự nhiên Câu 4: a, Cho a < 1; a c < 1999; b 1 < 1999 CMR: ab c < 39 98 b, Chứng tỏ có ít nhất một bất đẳng... nhau tại trung điểm của mỗi đoạn thẳng c, CM: H,K,L,D,E,F,P,Q,R cùng cách đều một điểm đề số 25 Câu 1: Cho A = 4x2+8x+3; B = 6x2+3x a, Biến đổi S thành tích biết S = A + B b, Tìm giá trị của x để A và B lấy giá trị là số đối nhau Câu 2: Phạm Tuấn Anh - Trờng THCS Sơn Tiến Đề thi HsG toán 8 Cho 3 số x, y, z thoả mãn đồng thời x2+2y = -1 y2+2z = -1 z2+2x = -1 Tính giá trị của A = x2001 + y2002 + z2003... chu vi VAMN đề số 27 Câu 1: Cho M = x3+x2-9x-9; N = (x-2)2 (x-4)2 a, Rút gọn A = M N b, CMR: Nếu x chẵn A tối giản Câu 2: Phạm Tuấn Anh - Trờng THCS Sơn Tiến Đề thi HsG toán 8 Tìm số có 4 chữ số abcd thỏa mãn: 665(abcd +ab +ad +cd +1) = 7 38( bcd +b+ d) Câu 3: CMR: (x-1)(x-3)(x-4)(x-6) + 10 1 Câu 4: Cho số chính phơng M gồm 4 chữ số Nếu ta thêm vào mỗi số của M một đơn vị thì đợc một số N là số chính . đoạn BP = a. CMR MNPV đều. Phạm Tuấn Anh - Trờng THCS Sơn Tiến Đề thi HsG toán 8 đề số 4 Câu 1: Phân tích thành nhân tử: a, a 8 + a 4 +1 b, a 10 + a 5 +1 Câu 2: a, Cho a+b+c = 0, Tính giá. trong nhóm 94. Câu 8: Cho hình vuông ABCD. M, N là trung điểm AB, BC, K là giao điểm của CM và DN CMR: AK = BC đề số 9 Phạm Tuấn Anh - Trờng THCS Sơn Tiến Đề thi HsG toán 8 Câu 1: Cho M = a b. hàng. đề số 12 Phạm Tuấn Anh - Trờng THCS Sơn Tiến Đề thi HsG toán 8 Câu 1: Tìm đa thức f(x) biết: f(x) chia cho x+3 d 1 f(x) chia cho x-4 d 8 f(x) chia cho (x+3)(x-4) thơng là 3x và d Câu 2: a,

Ngày đăng: 09/07/2014, 05:00

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w