Sở Giáo dục và đào tạo BìNH DƯƠNG Kỳ thi tuyển sinh lớp 10 THPT Năm học 2009-2010 Môn thi: Toán Thời gian làm bài: 120 phút (không kể thời gian giao đề.) Bài 1: (3,0 điểm) 1. GiảI hệ phơng trình 2 3 4 3 3 1 = + = x y x y 2. Giải hệ phơng trình: a) x 2 8x + 7 = 0 b) + =16x + 16 9x + 9 4x + 4 16 - x + 1 Bài 2: (2,0 điểm) Một hình chữ nhật có chu vi là 160m và diện tích là 1500m 2 . Tính chiều dài và chiều rộng hình chữ nhật ấy . Bài 3: (1,5 điểm) Cho phơng trình x 2 + 2(m+1)x + m 2 + 4m + 3 = 0 (với x là ẩn số, m là tham số ) 1- Tìm giá trị của m để phơng trình có hai nghiệm phân biệt . 2- Đặt A = x 1 .x 2 2(x 1 + x 2 ) với x 1 , x 2 là hai nghiệm phân biệt của phơng trình trên. Chứng minh : A = m 2 + 8m + 7 3- Tìm giá trị nhỏ nhất của A và giá trị của m tơng ứng . Bài 4 (3,5điểm) Cho đờng tròn tâm O đờng kính AB có bán kính R, tiếp tuyến Ax. Trên tiếp tuyến Ax lấy điểm F sao cho BF cắt đờng tròn tại C, tia phân giác của góc ABF cắt Ax tại E và cắt đờng tròn tại D . 1- Chứng minh OD // BC . 2- Chứng minh hệ thức : BD.BE = BC.BF . 3- Chứng minh tứ giác CDEF nội tiếp. 4- Xác định số đo của góc ABC để tứ giác AOCD là hình thoi. Tính diện tích hình thoi AOCD theo R . GIAI ẹE THI Baứi 1: 1. Giaỷi heọ phửụng trỡnh: 2 3 4 2 3 4 3 3 1 5 5 2 3 1 x y x y x y x x y = = = = + = = 2. Giaỷi phửụng trỡnh: Đề thi chính thức a) 2 8 7 0x x− + = Có dạng : a + b + c = 1 +(-8) + 7 = 0 1 2 1 7 x x = = ⇒ b) 15 16 16 9 19 4 14 16 1 4 1 3 1 2 1 1 16 4 1 16 1 4 x x x x x x x x x x x + − + + + = − + + − + + + + + = ⇔ ⇔ + = ⇔ + = =⇔ Bài 2: Gọi x,y là chiều dài và chiều rộng ( x>y>0) Ta có phương trình: 2 1 2 80 1500 80 1500 0 50 3 . 50 . 300 x y xy x c dai c ron x x g x + = = ⇒ − + = = = = ⇒ ⇒ = Bài 3: ( ) 2 2 2 2 2( 1) 4 3 0 1) ' ( 1) 4 3 = -2m-2 x m x m m m m m + + + + + = ∆ = + − + + Để phương trình có 2 nghiệm phân biệt: ⇔∆’ > 0 ⇔ m < -1 2) Theo Viet : 1 2 1 2 2 2 2 2 2( 1) . 4 3 4 3 4( 1) = 4 3 4 4 8 = 7 S x x m P x x m m A m m m m m m m m = + = − + = = + + ⇒ = + + + + + + + + + + Bài 4: 1) · · · · · · ( ) va so le trong (tia phan giac OD//BC ) ODB OBD OBD can ODB EBF EBF CBD = ∆ ⇒ = = ⇒ 2) · · 0 90ADB ACB= = (góc nội tiếp chắn nữa đường tròn) E D C B O A F * ∆vAEB, đường cao AD: Có AB 2 = BD.BE (1) * ∆vAFB, đường cao AC: Có AB 2 = BC.BF (2) Từ (1) và (2) ⇒ BD.BE = BC.BF . 3) Từ BD.BE = BC.BF · · BD BF BCD BFE BC BE CDB CFE ⇒ = ⇒ ∆ ∆ ⇒ = : ⇒ Tứ giác CDEF nội tiếp đường tròn ( góc ngoài bằng góc trong đối diện) 4) * Nếu tứ giác AOCD là hình thoi ⇒ OA = AD = DC = CO ⇒ ∆OCD đều · 0 60ABC⇒ = * S hình thoi = AC . OD = 2 2 2 (2 ) . 5R R R R+ = E D C B O A F . dạng : a + b + c = 1 +( -8 ) + 7 = 0 1 2 1 7 x x = = ⇒ b) 15 16 16 9 19 4 14 16 1 4 1 3 1 2 1 1 16 4 1 16 1 4 x x x x x x x x x x x + − + + + = − + + − + + + + + = ⇔ ⇔ + = ⇔ + = =⇔ Bài 2:. > 0 ⇔ m < -1 2) Theo Viet : 1 2 1 2 2 2 2 2 2( 1) . 4 3 4 3 4( 1) = 4 3 4 4 8 = 7 S x x m P x x m m A m m m m m m m m = + = − + = = + + ⇒ = + + + + + + + + + + Bài 4: 1) ·. 300 x y xy x c dai c ron x x g x + = = ⇒ − + = = = = ⇒ ⇒ = Bài 3: ( ) 2 2 2 2 2( 1) 4 3 0 1) ' ( 1) 4 3 = -2 m-2 x m x m m m m m + + + + + = ∆ = + − + + Để phương trình