1/ Viết phương trình mặt phẳng P đi qua ba điểm A, B, C và viết phương trình đường thẳng đi qua D song song với AB.2/ Tính thể tích của khối tứ diện ABCD, suy ra độ dài đường cao của tứ
Trang 1I.PHẦN CHUNG CHO TẤT CẢ THÍ SINH.(7 điểm)
Câu I.(3 điểm) Cho hàm số y = 2 1
1/ Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số
2/ Viết phương trình tiếp tuyến của (C) tại giao điểm của (C) với trục tung
Câu II (3 điểm)
1/ Giải phương trình : log3(x + 1) + log3(x + 3) = 1
Câu III (1 điểm) Cho hình chóp S.ABC có ABC là tam giác vuông cân tại B, AC a, SA ( ABC , góc giữa cạnh bên SB)
và đáy bằng 600 Tính thể tích của khối chóp
II PHẦN RIÊNG (3 điểm).
1.Theo chương trình chuẩn.
Câu IVa (2 điểm) Trong không gian với hệ tọa độ Oxyz , cho điểm M(1; 1 ; 0) và mặt phẳng (P): x + y – 2z + 3 = 0.
1/ Viết phương trình mặt cầu tâm M và tiếp xúc với mp(P)
2/ Viết phương trình đường thẳng (d) đi qua M và vuông góc với (P) Tìm tọa độ giao điểm
Câu Va (1 điểm) Tính diên tích hình phẳng giới hạn bởi các đường y = 3 và
y = x2 – 2x
2 Theo chương trình nâng cao
Câu IVb (2 điểm) Trong không gian với hệ tọa độ Oxyz, cho điểm M(-1 ; 2 ; 1) và đường thẳng (d): 1 2
1/ Viết phương trình mặt cầu tâm M và tiếp xúc với (d)
2/ Viết phương trình mặt phẳng đi qua M và vuông góc với (d) Tìm tọa độ giao điểm
Câu Vb (1 điểm).Tính diện tích hình phẳng giới hạn bởi các đường y = 1 2
Câu I.(3 điểm) Cho hàm số y = x3 – 3x2 + 2 có đồ thị (C)
1/ Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số
2/ Biện luận theo m số nghiệm của phương trình: x3 – 3x2 – m = 0
Câu II (3 điểm).
1/ Giải phương trình: 3x + 3x+1 + 3 x+2 = 351
2/ Tính I =
1 0
( 1)
3/ Tìm giá trị lớn nhát và giá trị nhỏ nhất của hàm số y = x4 – 2x2 + 1 trên đọan [-1 ; 2]
Câu III (1 điểm) Tính thể tích khối tứ diện đều S.ABC có tất cả các cạnh đều bằng a.
II PHẦN RIÊNG.(3 điểm)
1.Theo chương trình chuẩn.
Câu IV a (2 điểm) Trong không gian với hệ tọa độ Oxyz, cho các điểm A(-1 ; 2 ; 0), B(-3 ; 0 ; 2), C(1 ; 2 ; 3), D(0 ; 3 ; - 2).
1/ Viết phương trình mặt phẳng (ABC) và phương trình đường thẳng AD
2/ Tính diện tích tam giác ABC và thể tích tứ diện ABCD
Câu V a (1 điểm) Tính thể tích khối tròn xoay do hình phẳng giới hạn bởi các đường y = tanx , y = 0, x = 0, x =
4
quayquanh trục Ox
2 Theo chương trình nâng cao.
Câu IV b.(2 điểm)Trong không gian với hệ tọa độ Oxyz, cho các điểm A(-2 ; 0 ; 1), B(0 ; 10 ; 2), C(2 ; 0 ; -1), D(5 ; 3 ; -1).
1/ Viết phương trình mặt phẳng (P) đi qua ba điểm A, B, C và viết phương trình đường thẳng đi qua D song song với AB.2/ Tính thể tích của khối tứ diện ABCD, suy ra độ dài đường cao của tứ diện vẽ từ đỉnh D
Câu Vb (1 điểm) Tính thể tích khối tròn xoay do hình phẳng giới hạn bởi các đường y = x e , y = 0, x = 0, x = 1 quay quanh12 x
trục Ox
ĐỀ 3I.PHẦN CHUNG CHO ẤT CẢ THÍ SINH (7 điểm)
Câu I (3 điểm) Cho hàm số y = - x3 + 3x -1 có đồ thị (C)
1/ Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số
2/ Viết phương trình tiếp tuyến của (C) tại điểm cực tiểu của (C)
Câu II.(3 điểm)
Trang 2II PHẦN RIÊNG (3 điểm)
1.Theo chương trình chuẩn.
Câu IV a.(2 điểm) Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng
(P): 2x + y – z – 6 = 0 và điểm M(1, -2 ; 3)
1/ Viết phương trình mặt phẳng (Q) đi qua M và song song với mp(P).Tính khỏang cách từ M đến mp(P)
2/ Tìm tọa độ hinh chiếu của điểm M lên mp(P)
Câu Va (1 điểm) Giải phương trình: x2 – 2x + 5 = 0 trong tập số phức C
2 Theo chương trình nâng cao.
Câu IV b.(2 điểm) Trong không gian với hệ tọa độ Oxyz , cho hai mặt phẳng
(P): 3x – 2y + 2z – 5 = 0, (Q): 4x + 5y – z + 1 = 0
1/ Tính góc giữa hai mặt phẳng và viết phương tình tham số của giao tuyến của hai mặt phẳng (P) và (Q)
2/ Viết phương trình mặt phẳng (R) đi qua gốc tọa độ O vuông góc với (P) và (Q)
Câu Vb.(1 điểm) Cho số phức z = x + yi (x, y R Tìm phần thực và phần ảo của số phức z) 2 – 2z + 4i
ĐỀ 4I.PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7 điểm)
Câu I (3 điểm) Cho hàm số y = 2
1
x
x có đồ thị (C).
1/ Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số
2/ Viết phương trình tiếp tuyến của(C) tại điểm có hòanh độ x = -2
Câu II (3 điểm)
3/ Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = 1 x 2
Câu III.(1 điểm).Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a, cạnh bên hợp với đáy một góc 600
1/ Tính thể tích khối chóp S.ABCD
2/ Tìm tâm và tính bán kính mặt cầu ngọai tiếp hình chóp
II PHẦN RIÊNG (3 điểm)
1 Theo chương trình chuẩn.
Câu IV a (2 điểm) Trong không gian với hệ tọa độ Oxyz, cho điểm D(-3 ; 1 ; 2) và mặt phẳng (P) đi qua ba điểm A(1 ; 0 ; 11),
B(0 ; 1 ; 10), C(1 ; 1 ; 8)
1/ Viết phương trình đường thẳng AB và phương trình mặt phẳng (P)
2/Viết phương trình mặt cầu tâm D, bán kính R = 5 Chứng minh rằng mặt cầu này cắt mặt phẳng (P)
Câu Va (1 điểm) Tính diện tích hình phẳng giới hạn bởi các đường y = lnx ,y = 0, x = 1
e, x = e
2.Theo chương trình nâng cao.
Câu IV b.(2 điểm) Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): 2x + 2y + z + 5 = 0 và mặt cầu (S): x2 + y2
+ z2 – 2x – 4y + 4z = 0
1/ Tìm tâm và bán kính của mặt cầu (S)
2/ Viết phương trình mặt phẳng (Q) song song với (P) và tiếp xúc với (S) Tìm tọa độ của tiếp điểm
Câu Vb.(1 điểm) Tìm m để đường thẳng d: y = mx + 1 cắt đồ thị (C): y =
2 31
Câu I (3 điểm) Cho hàm số y = - x4 + 2x2 +3 có đồ thị (C)
1/ Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số
2/ Dựa vào đồ thị (C), tìm các giá trị của m để phương trình x4 – 2x2 + m = 0 có bốn nghiệm thực phân biệt
Câu II (3 điểm)
1/ Giải bất phương trình: log2xlog (4 x3) 2
Trang 31/ Tính thể tích khối chóp S.ABC theo a.
2/ Gọi I là trung điểm của cạnh SC, tính độ dài của cạnh BI theo a
II PHẦN RIÊNG (3 điểm)
1.Theo chương trình chuẩn.
Câu IV a (2 điểm) Trong không gian với hệ tọa độ Oxyz , cho ba điểm A(1 ; 4 ; 0), B(0 ; 2 ; 1), C(1 ; 0 ; -4).
1/ Tìm tọa độ điểm D để ABCD là hình bình hành và tìm tọa độ tâm của hình bình hành
2/ Viết phương trình đường thẳng (d) đi qua trọng tâm của tam giác ABC và vuông góc với mp(ABC)
Câu V a (1 điểm) Tính thể tích của khối tròn xoay tạo thành khi quay quanh trục tung hình phẳng giới hạn bởi các đường y =
lnx, trục tung và hai đường thẳng y = 0,
y = 1
2 Theo chương trình nâng cao.
Câu IV b (2 điểm) Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d: 1 2 3
1/ Chứng minh d và d’ chéo nhau
2/ Viết phương trình mặt phẳng (P) chứa d và song song với d’.Tính khỏang cách giữa d và d’
Câu V b (1 điểm) Tính thể tích khối tròn xoay tạo thành khi quay quanh trục hòanh hình phẳng giới hạn bởi các đường y = lnx,
y = 0, x = 2
ĐỀ 6I.PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7điểm)
Câu I.(3 điểm) Cho hàm số y = x(x – 3)2 có đồ thị (C)
1/ Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số
2/ Viết phương trình đường thẳng đi qua hai điểm cực trị của đồ thị hàm số
Câu II (3 điểm)
Câu III.(1 điểm) Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A Biết AB = a, BC = 2a, SC = 3a và cạnh bên SA
vuông góc với đáy Tính thể tích khối chóp S.ABC theo a
II PHẦN RIÊNG (3 điểm)
1.Theo chương trình chuẩn.
Câu IV a (2 điểm) Trong không gian Oxyz, cho bốn điểm A(1 ; -2 ; 2), B(1 ; 0 ; 0), C(0 ; 2 ; 0), D(0 ; 0 ; 3).
1/ Viết phương trình mặt phẳng (BCD) Suy ra ABCD là một tứ diện
2/ Tìm điểm A’ sao cho mp(BCD) là mặt phẳng trung trực của đọan AA’
Câu V a (1 điểm) Tính thể tích khối tròn xoay tạo thành khi quay quanh trục hòanh hình phẳng giới hạn bởi các đường y =
sinx.cosx, y = 0, x = 0, x =
2
2 Theo chương trình nâng cao.
Câu IV b (2 điểm) Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d: 1 1
1/ Tính góc giữa mp(P1) và mp(P2), góc giữa đường thẳng d và mp(P1)
2/ Viết phương trình mặt cầu tâm I thuộc d và tiếp xúc với mp(P1) và mp(P2)
Câu Vb (1 điểm) Tính thể tích khối tròn xoay tạo thành khi quay quanh trục tung hình phẳng giới hạn bởi các đường y = x2 và
y = 6 - | x |
Trang 4ĐỀ 7
I.PHẦN CHUNG CHO TẤT CẢ THÍ SINH.(7 điểm).
Câu I (3 điểm) Cho hàm số y =
1
x
x có đồ thị là (C).
1/ Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số
2/ Tìm m để đường thẳng d: y = -x + m cắt đồ thị (C) tại hai điểm phân biệt
Câu II.(3 điểm)
đọan [ 1; e ]
Câu III.(1 điểm) Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, cạnh bên SA = a 3 và vuông góc với đáy.
1/ Tính thể tích khối chóp S.ABCD
2/ Chứng minh trung điểm I của cạnh SC là tâm của mặt cầu ngọai tiếp hình chóp S.ABCD
II PHẦN RIÊNG (3 điểm)
1 Theo chương trình chuẩn.
Câu IV a.(2 điểm) Trong không gian với hệ tọa độ Oxyz,cho hai điểm A(2 ; 1 ; 1), B(2 ; -1 ; 5).
1/ Viết phương trình mặt cầu (S) đường kính AB
2/ Tìm điểm M trên đường thẳng AB sao cho tam giác MOA vuông tại O
Câu V a (1 điểm) Giải phương trình sau trên tập số phức : z4 – 1 = 0
2 Theo chương trình nâng cao.
Câu IV b.(2 điểm) Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S): x2 + y2 + z2 – 2x – 4y – 6z = 0 và hai điểm M(1 ; 1 ;1), N(2 ; -1 ; 5)
1/ Tìm tâm I và bán kính R của mặt cầu (S).Viết phương trình mặt phẳng (P) qua các hình chiếu của tâm I trên các trụctọa độ
2/ Chứng tỏ đường thẳng MN cắt mặt cầu (S) tại hai điểm Tìm tọa độ các giao điểm đó
Câu V b.(1 điểm) Biểu diễn số phức z = 1 – i 3 dưới dạng lượng giác.
ĐỀ 8I.PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7 điểm)
Câu I (3 điểm) Cho hàm số y = 1 4 2 5
3
2x x 2 có đồ thị là (C).
1/ Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số
2/ Viết phương trình tiếp tuyến của (C) tại điểm M(1; 0)
Câu II (3 điểm)
II PHẦN RIÊNG (3 điểm)
1.Theo chương trình chuẩn.
Câu IV a (2 điểm).Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(3 ; 0 ; -2), B(1 ; -2 ; 4).
1/ Viết phương trình đường thẳng AB và phương trình mặt phẳng trung trực của đọan AB
2/ Viết phương trình mặt cầu tâm A và đi qua điểm B Tìm điểm đối xứng của B qua A
Câu V a.(1 điểm) Tính thể tích của khối tròn xoay được tạo thành khi quay quanh trục tung hình phẳng giới hạn bởi các đường
y = 2 – x2 và y = | x |
2 Theo chương trình nâng cao.
Câu IV b (2 điểm) Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d: 1 1 2
2/ Viết phương trình mặt phẳng (P) chứa d và d’
Trang 5Câu V b.(1 điểm).Cho hàm số y =
2 3 62
x (1) Viết phương trình đường thẳng d đi qua điểm A(2 ; 0) và có hệ số
góc là k Với giá trị nào của k thì đường thẳng d tiếp xúc với đồ thị của hám số (1)
ĐỀ 9
I.PHẦN CUNG CHO TẤT CẢ THÍ SINH (7 điểm).
Câu I.(3 điểm) Cho hàm số y = -x3 + 3x2 – 2 có đồ thị (C)
1/ Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số
2/ Viết phương trình tiếp tuyến với (C) biết tiếp tuyến có hệ số góc k = -9
Câu II.(3 điểm).
Câu III (1 điểm) Cho hình chóp S.ABC có SA, AB, BC vuông góc với nhau từng đôi một Biết SA = a, AB = BC = a 3 Tính
thể tích của khối chóp và tìm tâm của mặt cầu ngọai tiếp hình chóp
II PHẦN RIÊNG (3 điểm).
1 Theo chương trình chuẩn.
Câu IV a (2 điểm) Trong không gian với hệ tọa độ Oxyz, cho điểm A(2 ; -1 ; 3), mặt phẳng (P): 2x - y - 2z + 1 = 0 và đường
2/ Tìm tọa độ của điểm M trên đường thẳng d sao cho khỏang cách từ M đến mp(P) bằng 3
Câu V a.(1 điểm) Giải phương trình sau trên tập số phức: z4 – z2 – 6 = 0
2 Theo chương trình nâng cao.
Câu IV b (2 điểm) Trong không gian với hệ tọa độ Oxyz, cho điểm A(1 ; 1 ; 1), mp(P): x + y – z – 2 = 0 và đường thẳng d:
1/ Tìm điểm A’ đối xứng của A qua d
2/ Viết phương trình đường thẳng đi qua A, song song với mp(P) và cắt d
Câu Vb (1 điểm) Giải hệ phương trình:
Câu I.(3 điểm) Cho hàm số y = (x – 1)2(x +1)2 có đồ thị (C)
1/ Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số
2/ Tìm m để đường thẳng d: y = m cắt đồ thị (C) tại ba điểm phân biệt
Câu II.(3 điểm)
1/ Giải phương trình: log(x – 1) – log(x2 – 4x + 3) = 1
2/ Tính I =
3 1
3/ Cho hàm số y = x3 – (m + 2)x + m ( m là tham số) Tìm m để hàm số có cực trị tại x = 1
Câu III.(1 điểm) Cho hình lăng trụ ABC A’B’C’ có đáy là tam giác đều cạnh a, cạnh bên bằng a 3 và hình chiếu của A’ lên
mp(ABC) trùng với trung điểm của BC.Tính thể tích của khối lăng trụ đó
II PHẦN CHUNG (3 điểm)
1 Theo chương trình chuẩn.
Câu IV a.(2 điểm) Trong không gian với hệ tọa độ Oxyz, cho hai điểm A, B có tọa độ xác định bởi các hệ thức
1/ Tìm giao điểm M của đường thẳng AB với mp(P)
2/ Viết phương trình hình chiếu vuông góc của AB trên mp (P)
Trang 6Câu V a.(1 điểm) Tính thể tích khối tròn xoay tao thành khi quay quanh trục Ox hình phẳng giới hạn bởi các đường y = 1
2/ Theo chương trình nâng cao.
Câu IVb (2 điểm) Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d:
1 22
1/ Viết phương trình đường thẳng đi qua gốc tọa độ O vuông góc với d và song song với (P)
2/ Viết phương trìng mặt cầu có tâm thuộc d, tiếp xúc (P) và có bán kính bằng 4
Câu Vb.(1 điểm) Tính 3 i8
ĐỀ 11
I/_ Phần dành cho tất cả thí sinh
Câu I ( 3 điểm) Cho hàm số 1 1
x với x0
Câu III (1 điểm) Xác định tâm và bán kính mặt cầu ngoại tiếp một hình lăng trụ tam giác đều có 9 cạnh đều bằng a
II/_Phần riêng (3 điểm)
1) Theo chương trình chuẩn
Câu IV a (2 điểm) Trong không gian cho hệ tọa độ Oxyz, điểm A (1; -1; 1) và hai đường thẳng (d1) và (d2) theo thứ tự có
Câu V a (1 điểm) Tìm môđun của số phức z 2 i 2i2
2) Theo chương nâng cao
Câu IV b (2 điểm) Trong không gian cho hệ tọa độ Oxyz, cho mặt phẳng vµ lần lượt có phương trình là:
I Phần chung cho tất cả thí sinh (7,0 điểm)
Câu I.( 3,0 điểm) Cho hàm số 1 3 2 2
Trang 71.Tìm giá trị lớn nhất và nhỏ nhất của hàm số yx48x216 trên
Cho tứ diện S.ABC có SA vuông góc với mặt phẳng (ABC), SA = a; AB = AC= b, 60
BAC Xác định tâm và bán
hình cầu ngoại tiếp tứ diện S.ABC
II.Phần riêng(3,0 điểm)
Thí sinh học chương trình nào thì chỉ được làm phần dành riêng cho chương trình đó.
1 Theo chương trình Chuẩn:
Câu IV.a(2,0 điểm) Trong không gian với hệ toạ độ Oxyz:
a)Lập phương trình mặt cầu có tâm I(-2;1;1) và tiếp xúc với mặt phẳng
2
4x y z và x y z
Câu V.a(1,0 điểm) Giải phương trình : 3z44z27 0 trên tập số phức
2.Theo chương trình nâng cao.
Câu IV.b(2,0 điểm)
Trong không gian với hệ toạ độ Oxyz,cho đường thẳng d có phương trình: 1 1
I Phần chung cho tất cả thí sinh (7,0 điểm)
Câu I.( 3,0 điểm)
1 Khảo sát sự biến thiên và vẽ đồ thị của hàm số 2
2.Tìm trên đồ thị điểm M sao cho khoảng cách từ M đến đường tiệm cận đứng bằng khoảng cách từ M đến tiệm cậnngang
Câu II.(3,0 điểm)
Một hình trụ có thiết diện qua trục là hình vuông, diện tích xung quanh là 4
1.Tính diện tích toàn phần của hình trụ
2 Tính thể tích của khối trụ
II.Phần riêng(3,0 điểm)
Thí sinh học chương trình nào thì chỉ được làm phần dành riêng cho chương trình đó.
1 Theo chương trình Chuẩn:
Câu IV.a(2,0 điểm) Trong không gian với hệ toạ độ Oxyz:cho A(1;0;0), B(1;1;1), 1 1 1; ;
a)Viết phương trình tổng quát của mặt phẳng đi qua O và vuông góc với OC
b) Viết phương trình mặt phẳng chứa AB và vuông góc với Câu V.a(1,0 điểm)
Tìm nghiệm phức của phương trình z2z 2 4i
ĐỀ 14
I PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH
Câu 1 (4,0 điểm):
Trang 8Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, cạnh bên SB vuông góc với đáy, cạnh bên SC bằng a 3.
1 Tính thể tích của khối chóp S.ABCD
2 Chứng minh trung điểm của cạnh SD là tâm mặt cầu ngoại tiếp hình chóp S.ABCD
II PHẦN DÀNH CHO TỪNG THÍ SINH
A Dành cho thí sinh Ban cơ bản:
Câu 4 (2,0 điểm)
1.Tính tích phân:
1 0
( 1)
x
2 Trong không gian với hệ tọa độ Oxyz cho ba điểm A(5;0;4), B(5;1;3), C(1;6;2), D(4;0;6)
a Viết phương trình tham số của đường thẳng AB
b Viết phương trình mặt phẳng ( ) đi qua điểm D và song song với mặt phẳng (ABC)
B Dành cho thí sinh Ban nâng cao
Câu 5 (2,0 điểm)
1 Tính tích phân:
2
3 3 1
1
2.Trong không gian với hệ tọa độ Oxyz, cho điểm M(1;2;3) và mặt phẳng (P) có phương trình: x - 2y + z + 3 = 0
a Viết phương trình mặt phẳng (Q) đi qua điểm M và song song với mặt phẳng (P)
b Viết phương trình tham số của đường thẳng (d) đi qua điểm M và vuông góc với mặt phẳng (P) Tìm tọa độ giao điểm
H của đường thẳng (d) với mặt phẳng (P)
II PHẦN RIÊNG (3 điểm)
1 Theo chương trình Chuẩn:
Câu 4 a ( 2 điểm)
Trong không gian với hệ toạ độ Oxyz cho A(2 ; 0; 0) , B( 0; 4; 0 ) và C(0; 0; 4)
1.Viết phương trình mặt cầu qua 4 điẻm O, A, B, C Xác định toạ độ tâm I và tính bán kính R của mặt cầu
2.Viết phương trình mặt phẳng ( ABC) và đường thẳng d qua I vuông góc với (ABC)
Câu 4 b (1 điểm ) Tìm số phức z thoả mãn z 5 và phần thực bằng 2 lần phần ảo của nó.
Theo chương trình nâng cao:
Câu 4 a ( 2 điểm) Trong không gian với hệ toạ độ Oxyz, cho 2 đường thẳng có phương trình
Trang 91.Viết phương trình mặt phẳng qua đường thẳng 1 và song song với đường thẳng 2
2.Xác định điểm A trên 1 và điểm B trên 2 sao cho AB ngắn nhất
Câu 4 b (1 điểm ) Giải phương trình trên tập số phức: 2z2 + z +3 = 0
II PHẦN RIÊNG (3 điểm)
2 Theo chương trình Chuẩn:
Câu 4 a ( 2 điểm)
Trong không gian với hệ toạ độ Oxyz cho A(2 ; 4; -1) , B( 1; 4; -1 ) , C(2; 4; 3) và
D(2; 2; -1)
1.CMR AB AC, AC AD, AD AB Tính thể tích của tứ diện ABCD
2.Viết phương trình mặt cầu qua 4 điẻm A, B, C, D Xác định toạ độ tâm I và tính bán kính R của mặt cầu
1 Viết phương trình đường thẳng đi qua A và G là trọng tâm của tam giác BCD
2.Viết phương trình mặt cầu tâm Avà tiếp xúc (BCD)
Câu I.(3 điểm) Cho hàm số yx33x 2
1 Khảo sát sự biến thiên và vẽ đồ thị hàm số đã cho
2 Biện luận theo m số nghiệm của phương trình x33x2m
Câu II.(3 điểm)
Trang 10Câu 3.(1 điểm)Cho tứ diện S.ABC có ba cạnh SA, SB, SC đôi một vuông góc và SA=a, SB=b, SC=c Hai điểm M, N lần lượt
thuộc 2 cạnh AB, BC sao cho 1 , 1
AM AB BN BC Mặt phẳng (SMN) chia khối tứ diện S.ABC thành 2 khối đa diện (H) và
(H’) trong đó (H) là khối đa diện chứa đỉnh C Hãy tính thể tích của (H) và (H’)
II PHẦN RIÊNG (3 điểm) :
1 Theo chương trình chuẩn :
Câu IV.a(2 điểm) Trong không gian với hệ tọa độ Oxyz, cho điểm A(1 ; 4 ; 2) và mặt phẳng (P) có phương trình : x + 2y
+ z – 1 = 0
1 Hãy tìm tọa độ của hình chiếu vuông góc của A trên mặt phẳng (P)
2 Viết phương trình của mặt cầu tâm A, tiếp xúc với (P)
Câu V.a(1 điểm) Tính thể tích khối tròn xoay được tạo bởi phép quay quanh trục Ox hình phẳng giới hạn bởi các đường
2 2 1, 0, 2, 0
2.Theo chương trình nâng cao :
Câu IV.b(2 điểm)
Cho mặt phẳng (P): 2x+y-z-3=0 và đường thẳng (d): 2 3
1 Tìm tọa độ giao điểm M của đường thẳng (d) và mặt phẳng (P)
2 Viết phương trình hình chiếu của đường thẳng (d) trên mặt phẳng (P)
Câu Vb (1 điểm)
Xác định tọa độ giao điểm của tiệm cận xiên của đồ thị hàm số
2 3 12
1/Khảo sát sự biến thiên và vẽ đồ thị (C ) của hàm số y= 1
1
x x
2/Viết phương trình tiếp tuyến với(C) tại giao điểm của ( C) với trục tung
2/Giải bất phương trình log3 x2 log9 x2
3/Tính các cạnh của hình chữ nhật có chu vi nhỏ nhất trong tất cả các hinh chữ nhật có diện tích 48m2
Câu III: (2điểm)
Trong không gian Oxyz cho 3 điểm A(2;2;3) ;B(1;2;-4) ;và C(1;-3;-1)
1/Viết phương trình mặt phẳng ABC
2/Viết phương trình mặt cầu ngoại tiếp tứ diện OABC.Tâm của mặt cầu có trùng với trọng tâm của tứ diện không?
Câu IV:(1 điểm)
Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a;góc SAB bằng 300.Tính diện tích xung quanh của hình nónđỉnh S, đáy là hình tròn ngoại tiếp tứ giác ABCD
ĐỀ 19
I PHẦN CHUNG CHO TẤT CẢ THÍ SINH ( 7 điểm )
Câu I ( 3,0 điểm )
Cho hàm số y x3 3x2 1 có đồ thị (C)
1 Khảo sát sự biến thiên và vẽ đồ thị (C)
2 Dùng đồ thị (C), xác định k để phương trình x3 3x2 k 0 có đúng 3 nghiệm phân biệt
Câu II ( 3,0 điểm )
1 Giải phương trình: 4.9x12x3.16x 0 (x )
2 Tính tích phân:
2 2 3
3 Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số: y 4 4 x2
Câu III ( 1,0 điểm )
Trang 11Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A, AB a AC a , 3,mặt bên SBC là tam giác đều và vuông góc với mặt phẳng đáy Tính theo a thể tích của khối chóp S.ABC.
II PHẦN RIÊNG ( 3 điểm )
1 Theo chương trình chuẩn :
Câu IV.a ( 2,0 điểm ) :
Trong không gian với hệ tọa độ Oxyz , cho đường thẳng (d): 2 3
1 Viết phương trình mặt cầu tâm (1; 2; 3)I và tiếp xúc với mặt phẳng (P).
2 Viết phương trình mặt phẳng ( ) chứa đường thẳng (d) và vuông góc với mặt phẳng (P)
Câu V.a ( 1,0 điểm ) :
Tính môđun của số phức
3
(1 2 )3
i z
i .
2 Theo chương trình nâng cao :
Câu IV.b ( 2,0 điểm ) : Trong không gian với hệ tọa độ Oxyz , cho đường thẳng (d): 2 3
1 Viết phương trình mặt cầu tâm (1; 2; 3)I và tiếp xúc với mặt phẳng (P)
2 Viết phương trình hình chiếu vuông góc của đường thẳng (d) trên mặt phẳng (P)
Câu V.b ( 1,0 điểm ) : Tìm căn bậc hai của số phức z4i
ĐỀ 20
Câu 1 : Cho hàm số yx33x2(C)
a.Khảo sát và vẽ đồ thị hàm số (C)
b.Dựa vào (C) biện luận theo m số nghiệm phương trình : x33x 1 m0
c.Tính diện tích hình phẳng giới hạn bởi (C ) và trục Ox
Câu 2 :
a)Tính đạo hàm của hàm số sau : 4 2 os(1-3x)
x
y e c ; y = 5cosx+sinx b) Tìm GTLN, GTNN của hàm số 4 2 1
4
f x x x trên đoạn [-2 ;0]
c) Tính giá trị biểu thức A = (31 log 4 9 ) : (42 log 3 2 )
d) Giải các phương trình, bất phương trình sau : log2xlog4xlog16x7
e) tính các tích phân sau : I =
2 2 1
1
x x dx ; J =
2 3 3
2cos 3
Câu 3 : Tính diện tích xung quanh và thể tích khối chóp tứ giác đều có độ dài cạnh bên gấp đôi cạnh đáy và bằng a ?
Câu 4/ Cho 2 điểm A (0; 1; 2) và B (-3; 3; 1)
a/ Viết phương trình mặt cầu tâm A và đi qua B
b/ Viết phương trình tham số của đường thẳng (d ) qua B và song song với OA
c/ Viết phương trình mặt phẳng ( OAB)
Câu 5/ a/ Giải phương trình sau trong tập tập số phức : x2 – x + 1 = 0
b)Viết phương trình tiếp tuyến của (C) tại điểm có hoành độ bằng -1
c.) Tính diện tích hình phẳng giới hạn bởi (C) ; tiệm cạnh ngang ; x=0 ; x=1
Câu2 : a) Tìm GTLN – GTNN của hàm số y = (x – 6) x24 trên đoạn [0 ; 3].
a/ yx1e b/ y = (3x – 2) ln2x 2x c/ ln 1 2
y x
Trang 12d) tính các tích phân : I =
2
2 1
0 2
x dx x e) Giải phương trình :
a)log ( - 3) +log ( - 1) = 32 x 2 x b)3.4x 21.2x 24 0
Câu 3 : Thiết diện của hình nón cắt bởi mặt phẳng đi qua trục của nó là một tam giác đều cạnh a
Tính diện tích xung quanh; toàn phần và thể tích khối nón theo a ?
Câu 4 : Trong không gian Oxyz
+ Chứng minh A, B, C không thẳng hàng Viết phương trình mặt phẳng ( ABC )
+ Viết phương trình mặt cầu tâm I ( -2;3;-1) và tiếp xúc (ABC)
Câu 5 : a/ Giải phương trình : (3-2i)x + (4+5i) = 7+3i
b/ Tìm x;y biết : (3x-2) + (2y+1)i = (x+1) – (y-5)i
ĐỀ 22
Câu1: Cho hàm số y = x3 - 3x2 + 2 (C)
a).Khảo sát sự biến thiên và vẽ đồ thị hàm số
b).Tìm giá trị của m để phương trình : -x3 + 3x2 + m = 0 có 3 nghiệm phân biệt
c) Tính diện tích hình phẳng giới hạn bởi (C); Ox ; Oy ; x=2
Câu 2: a)Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số: y = x+ 1 x2
a) Tính diện tích xung quanh và thể tích khối chóp
b) Tìm tâm và bán kính mặt cầu ngoại tiếp hình chóp
Câu 4: Trong không gian cho hai đường thẳng (d1) và (d2) có phương trình: (d1)
b Viết phương trình mặt phẳng (p) chứa (d1)và (d2)
c Viết phương trình mặt cầu đường kính OH với H là giao điểm của hai đường thẳng trênCâu 5 : a Tìm nghịch đảo của z = 1+2i
b Giải phương trình : (3+2i)z = z -1
ĐỀ 23
A Phần chung cho thí sinh cả hai ban
Câu 1: Cho hàm số: yx33x2 4 Với m là tham số
1 Khảo sát và vẽ đồ thị ( C ) của hàm số
2 Biện luận theo m số nghiệm của phương trình: x33x22m 1 0
Câu 2: Giải hệ phương trình sau: 2 13 0
Câu 4: Tính thể tích của khối lăng trụ đứng có đáy là tam giác đều cạnh a, góc giữa đường chéo mặt bên và đáy là 30 độ
B Phần riêng cho thí sinh từng ban
Thí sinh ban khoa học tự nhiên làm câu 5a hoặc 5b
Trang 13x có 2 cực trị nằm cùng một phía so với trục hoành.
Câu 5b:Trong hệ toạ độ Oxyz cho các điểm A(0,1,2), B(2,3,1), C(2,2,-1) Lập phương trình mặt phẳng đi qua A,B,C.Chứngminh rằng điểm O cũng nằm trên mặt phẳng đó và OABC là hình chữ nhật Tính thể tích khối chóp SOABC biết rằng S(0,0,5)
Thí sinh ban khoa họcxã hội làm câu 6a hoặc 6b
1) Khảo sát sự biên thiên và vẽ đồ thị (C) của hàm số
2) Dựa vào đồ thị (C), biện luận theo m số nghiệm của phương trình : x3 – 3x + m = 0
Câu II : (3đ)
1) Giải phương trình : lg2x – lg3x + 2 = 0
2) Tính tích phân : I =
/ 2 0
osxdx
e c x3) Cho hàm số f(x) = x3 + 3x2 + 1 có đồ thị (C) Viết phương trình tiếp tuyến của (C) đi qua gốc tọa độ
Câu III : (1đ) Cho hình chóp tứ giác đều, tất cả các cạnh đều bằng a Tính thể tích hình chóp S.ABCD
II Phần riêng : (3đ)
Chương trình chuẩn :
Câu IVa: Trong không gian Oxyz cho 4 điểm A(3 ;-2 ; -2), B(3 ;2 ;0),C(0 ;2 ;1), D(-1;1;2)
1) Viết phương trình mặt phẳng (BCD) Suy ra ABCD là 1 tứ diện
2) Viết phương trình mặt cầu tâm A tiếp xúc với mặt phẳng (BCD)
Câu Va : Giải phương trình : x2 + x + 1 = 0 trên tâp số phức
Chương trình nâng cao :
Câu VIb: Cho 2 đường thẳng d1 :
434
1) Tính đoạn vuông góc chung của 2 đường thẳng d1 và d2
2) Viết phương trình mặt cầu có đường kính là đoạn vuông góc chung của d1 và d2
Câu Vb: Giải phương trình: x2 + (1 + i)x – ( 1 – i) = 0 trên tâp số phức
ĐỀ 25
I/ PHẦN CHUNG : (7điểm)
Câu I: (3 điểm)
Cho hàm số Cho hàm số y = (x – 1)2 (4 – x)
1/ Khảo sát và vẽ đồ thị (C) của hàm số Viết phương trình tiếp tuyến của đồ thị (C) tại A(2;2)
2/ Tìm m để phương trình: x3 – 6x2 + 9x – 4 – m = 0, có ba nghiệm phân biệt
Câu II: ( 3 điểm)
Câu III: (1 điểm)
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, mặt bên SAB là tam giác đều và vuông góc với đáy Gọi
H là trung điểm AB Chứng minh rằng: SH vuông góc mặt phẳng (ABCD) Tính thể tích khối chóp S.ABCD theo a
Trang 14II/ PHẦN RIÊNG: (3điểm)
1 Theo chương trình chuẩn:
Câu IV.a: (2 điểm)
Trong không gian Oxyz cho mặt cầu (S): x2 + y2 + z2 – 2x – 4y – 6z = 0
1/ Xác định tâm và bán kính của mặt cầu (S)
2/ Gọi A ; B ; C lần lượt là giao điểm (khác gốc toạ độ O) của mặt cầu (S) với các trục Ox ; Oy ; Oz Tìm toạ độ A ; B ;
C Viết phương trình mặt phẳng (ABC)
Câu V.a: (1điểm)
Giải phương trình sau trên tập số phức: z2 + 4z + 10 = 0
2 Theo chương trình nâng cao:
Câu IV.b: (2 điểm)
Trong không gian Oxyz cho đường thẳng (D): 2 1 1
1/ Chứng tỏ đường thẳng (D) không vuông góc mp (P) Tìm giao điểm của đường thẳng (D) và mặt phẳng (P)
2/ Viết phương trình đường thẳng (D’) là hình chiếu vuông góc của đường thẳng (D) lên mặt phẳng (P)
2 CMR với mọi giá trị của m, đường thẳng (d) y = 2x + m luôn cắt (C) tại 2 điểm phân biệt
3 Gọi A là giao điểm của (C) với trục Ox Viết phương trình tiếp tuyến của (C) tại A
Câu II (3đ): 1 Giải phương trình: 32 log 3 81
1) Tìm giá trị lớn nhất và giá rị nhỏ nhất của hàm số: y = 2sin2x + 2sinx – 1
Câu III (1đ):
Cho tứ diện SABC có cạnh SA vuông góc với mặt phẳng (ABC) và có SA = a, AB = b, AC = c và BAC900 Tính
diện tích mặt cầu và thể tích khối cầu ngoại tiếp tứ diện SABC
PHẦN RIÊNG (3đ):
1.Theo chương trình chuẩn:
Câu IV.a (2đ):
Trong không gian Oxyz Cho điểm M(-3;1;2) và mặt phẳng (P) có phương trình: 2x + 3y + z – 13 = 0
1) Hãy viết phương trình đường thẳng (d) đi qua M và vuông góc với mặt phẳmg (P) Tìm tọa độ giao điểm H của đườngthẳng (d) và mặt phẳng (P)
2) Hãy viết phương trình mặt cầu tâm M có bán kính R = 4 Chứng tỏ mặt cầu này cắt mặt phẳng (P) theo giao tuyến là 1đường tròn
Câu V.a (1đ):
Tính diện tích hình phẳng giới hạn bởi các đường (P): y = 4 – x2, (d): y = -x + 2
2.Theo chương trình Nâng cao:
1) Viết phương trình mặt cầu (S) ngoại tiếp tứ diện ABCD
2) Tìm tọa độ giao điểm M, N của (d) với mặt cầu (S)
3) Viết phương trình các mặt phẳng tiếp xúc với mặt cầu (S) tại M,N
Câu V.b (1đ): Tính diện tích hình phẳng giới han bởi các đường (P): y = x2 + 1, tiếp tuyến của (P) tại M(2;5) và trục Oy
ĐỀ 27
CâuI: ( 3 điểm)
1/Khảo sát sự biến thiên và vẽ đồ thị(C ) của hàm số y= -x3+3x2-3x+2
2/Tính diện tích hình phẳng giới hạn bởi (C ) và 2 trục tọa độ
Câu II: (3 điểm)
1/Cho hàm số y= xsinx Chứng minh rằng : xy-2y' sin x +xy’’=0
Trang 152/Giải phương trình: log3 3x1.log3 3 1 3
1
x x dx Câu III( 2 điểm)
Trong không gian Oxyz cho 2 mặt phẳng( ) và (') có phương trình: ( ) :2x-y+2z-1=0 và ( ’):x+6y+2z+5=0 1/Chứng tỏ 2 mặt phẳng đã cho vuông góc với nhau
2/Viết phương trình mặt phẳng( ) đi qua gốc tọa độ và giao tuyến của 2 mặt phẳng( ) , (')
Câu IV: (1 điểm):
Cho khối hộp ABCD.A’B’C’D’ có thể tích 2009 cm3.Tính thể tích khối tứ diện C’ABC
Câu V:( 1 điểm) Tính môđun của số phức z biết Z =2i 3 1 3
Câu 1 ( 3,0 điểm ) Cho hàm số y2x33x2 2 có đồ thị (C)
1 Khảo sát sự biến thiên và vẽ đồ thị (C)
2 Viết phương trình tiếp tuyến của (C) tại điểm có hoành độ x o 2
3 Tìm GTLN, GTNN của hàm số y 9 7 x trên đoạn [-1;1].2
Câu 3 ( 1,0 điểm ) Cho tứ diện đều ABCD có cạnh bằng
2
a
1 Tính chiều cao của tứ diện ABCD
2 Tính thể tích của tứ diện ABCD
II PHẦN DÀNH CHO THÍ SINH TỪNG BAN ( 3,0 điểm )
Câu 4a ( 2,0 điểm ) Cho bốn điểm A(1;0;0), B(0;1;0), C(0;0;1), D(-2;1;-1)
1 Chứng minh A, B, C, D là bốn đỉnh của một tứ diện.
2 Tính thể tích của tứ diện đó.
3 Lập phương trình mặt cầu ngoại tiếp tứ diện ABCD.
Câu 5a ( 1,0 điểm ) Giải phương trình x2 x 7 0trên tập số phức
ĐỀ 29
I PHẦN CHUNG (7,0 điểm )
Câu 1 ( 3,0 điểm ) Cho hàm số yx33x2 4 có đồ thị (C)
1.Khảo sát sự biến thiên và vẽ đồ thị (C)
2.Viết phương trình tiếp tuyến của (C) tại tâm đối xứng
II PHẦN DÀNH CHO THÍ SINH TỪNG BAN ( 3,0 điểm )
Câu 4a ( 2,0 điểm ) Cho mặt cầu (S) có đường kính AB, biết A(6;2;-5), B(-4;0;7).
1 Lập phương trình mặt cầu (S)
2 Lập phương trình mặt phẳng (P) tiếp xúc mặt cầu (S) tại điểm A
Trang 16Câu 5a ( 1,0 điểm ) Giải phương trình 2x2 x 7 0trên tập số phức.
ĐỀ 30
I PHẦN CHUNG (7,0 điểm )
Câu 1 ( 3,0 điểm ) Cho hàm số yx33x2 4 có đồ thị (C)
1.Khảo sát sự biến thiên và vẽ đồ thị (C)
2.Dùng đồ thị (C), biện luận theo m số nghiệm của phương trình: x33x2 m 4
Câu 2 ( 3,0 điểm )
1.Giải phương trình 4log9xlog 3 3x
2.Tính tích phân
1 0
II PHẦN DÀNH CHO THÍ SINH TỪNG BAN ( 3,0 điểm )
Câu 4a ( 2,0 điểm ) Cho bốn điểm A(-2;6;3), B(1;0;6), C(0;2;-1), D(1;4;0)
1 Viết phương trình mặt phẳng (BCD) Suy ra ABCD là một tứ diện.
2 Tính chiều cao AH của tứ diện ABCD.
3 Viết phương trình mặt phẳng (Q) chứa AB và song song với CD.
Câu 5a ( 1,0 điểm ) Giải phương trình x2 x 5 0trên tập số phức
ĐỀ 31
I.PHẦN CHUNG (7,0 điểm )
Câu 1 ( 3,0 điểm ) Cho hàm số y x 3 3 x 2 1 có đồ thị (C)
1.Khảo sát sự biến thiên và vẽ đồ thị (C)
2.Viết phương trình tiếp tuyến của (C) tại điểm có hoành độ x o 2
II PHẦN DÀNH CHO THÍ SINH TỪNG BAN ( 3,0 điểm )
Câu 4a ( 2,0 điểm ) Cho mặt phẳng ( ) : 3 x5y z 2 0 và đường thẳng
1 Tìm giao điểm M của đường thẳng (d) và mặt phẳng ( )
2 Viết phương trình mặt phẳng ( ) chứa điểm M và vuông góc với đường thẳng (d)
Câu 5a ( 1,0 điểm ) Giải phương trình x22x 7 0trên tập số phức
Trang 17ĐỀ 32
I.PHẦN CHUNG (7,0 điểm )
Câu 1 ( 3,0 điểm ) Cho hàm số yx33x21 có đồ thị (C)
1.Khảo sát sự biến thiên và vẽ đồ thị (C)
2.Viết phương trình tiếp tuyến của (C) tại điểm có hoành độ x o 1.
II PHẦN DÀNH CHO THÍ SINH TỪNG BAN ( 3,0 điểm )
Câu 4a ( 2,0 điểm ) Cho hai đường thẳng 1
Câu 5a ( 1,0 điểm ) Giải phương trình 2x23x 7 0trên tập số phức
ĐỀ 33
I PHẦN CHUNG (7,0 điểm )
Câu 1 ( 3,0 điểm ) Cho hàm số yx33x2 4 có đồ thị (C)
1.Khảo sát sự biến thiên và vẽ đồ thị (C)
2.Viết phương trình tiếp tuyến của (C) tại điểm có tọa độ ( 1; 2)
II PHẦN DÀNH CHO THÍ SINH TỪNG BAN ( 3,0 điểm )
Câu 4a ( 2,0 điểm ) Cho mặt cầu ( ) :S x2y2z210x2y26z170 0
1 Tìm toạ độ tâm I và độ dài bán kính r của mặt cầu (S)
2 Lập phương trình đường thẳng (d) qua điểm I vuông góc với mặt phẳng ( ) : 2 x 5y z 14 0
Câu 5a ( 1,0 điểm ) Giải phương trình 2x2 4x 7 0trên tập số phức
Trang 18ĐỀ 34
I.PHẦN CHUNG (7,0 điểm )
Câu 1 ( 3,0 điểm ) Cho hàm số yx36x29x có đồ thị (C)
1.Khảo sát sự biến thiên và vẽ đồ thị (C)
2.Viết phương trình tiếp tuyến của (C) tại điểm cực đại của nó
Câu 2 ( 3,0 điểm )
1.Giải phương trình 1 3
9x4.3x 3 0.2.Tính tích phân
1.Tính chiều cao của tứ diện ABCD
2.Tính thể tích của tứ diện ABCD
II PHẦN DÀNH CHO THÍ SINH TỪNG BAN ( 3,0 điểm )
Câu 4a ( 2,0 điểm ) Cho ba điểm A(1;0;-1), B(1;2;1), C(0;2;0) Gọi G là trọng tâm tam giác ABC.
1 Viết phương trình đường thẳng OG
2 Viết phương trình mặt cầu (S) đi qua bốn điểm O, A, B, C
3 Viết phương trình các mặt phẳng vuông góc với đường thẳng OG và tiếp xúc với mặt cầu (S)
Câu 5a ( 1,0 điểm ) Giải phương trình x23x 9 0trên tập số phức
ĐỀ 35
I.PHẦN CHUNG (7,0 điểm )
Câu 1 ( 3,0 điểm ) Cho hàm số yx33x có đồ thị (C)
1.Khảo sát sự biến thiên và vẽ đồ thị (C)
2.Dùng (C), tìm các giá trị của m để phương trình sau có ba nghiệm thực x3 3x m 2 0
1.Tính chiều cao của tứ diện ABCD
2.Tính thể tích của tứ diện ABCD
II PHẦN DÀNH CHO THÍ SINH TỪNG BAN ( 3,0 điểm )
Câu 4a ( 2,0 điểm ) Cho đường thẳng ( ) : 2 1 1
1 Tìm toạ độ giao điểm M của đường thẳng (d) và mặt phẳng ( )
2 Viết phương trình mặt phẳng chứa (d) và vuông góc với mặt phẳng ( )
Câu 5a ( 1,0 điểm ) Giải phương trình x2 x 5 0trên tập số phức
ĐỀ 36
I PHẦN CHUNG (7,0 điểm )
Câu 1 ( 3,0 điểm ) Cho hàm số yx33x2 4x2 có đồ thị (C)
1.Khảo sát sự biến thiên và vẽ đồ thị (C)
2.Viết phương trình tiếp tuyến của (C) tại điểm có hoành độ x o 1
(1 )