1. Trang chủ
  2. » Giáo án - Bài giảng

DE THI TUYEN 10 TINH KHANH HOA

5 359 1

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 5
Dung lượng 249,5 KB

Nội dung

Bài 4: Cho tam giác ABC đều nội tiếp đường tròn tâm O.Gọi I là điểm chính giữa của cung nhỏ BC.. Gọi H là trọng tâm của tam giác PMB; E là trung điểm của AP và N là chân đường vuông góc

Trang 1

ĐỀ 1 (Đề thi vào lớp 10 – Năm học 94 - 95)

Bài 1: Cho biểu thức:

+

+

+

10 2 :

2

1 2

2

x x

x x x

x

a) Tìm các giá trị của x để biểu thức B có nghĩa

b) Rút gọn biểu thức B

Bài 2: Cho PT: x2 - 2(m - 3) - 2(m - 1) = 0

a) Chứng tỏ PT luôn có hai nghiệm phân biệt với mọi giá

trị của m

b) Xác định m để pt có hai nghiệm phân biệt trái dấu

c) Tìm giá trị nhỏ nhất của biểu thức : M = x1 + x2 với x1,

x2 là hai nghiệm của pt đã cho

Bài 3: Có hai đội công nhân, mỗi đội phải sửa 20 km

đường Thời gian đội I làm nhiều hơn đội II là 1 ngày Hỏi

trong một ngày mỗi đội làm được boa nhiêu km đường,

biết rằng cả hai đội làm được 9 km đường trong một ngày

Bài 4: Cho tam giác ABC đều nội tiếp đường tròn tâm

O.Gọi I là điểm chính giữa của cung nhỏ BC Trên cạnh

AB lấy điểm M trên tia AC lấy điểm N sao cho: CN = BM

(C nằm giữa A, N) Chứng minh:

a) IM = IN

b) Tứ giác AMIN nội tiếp

c) Gọi K là giao điểm của MN với BC Chứng minh :

KM = KN

d) Cho P là điểm di động trên cung ACI H là hình chiếu

của P xuống AI; E là hình chiếu của H xuống AP; F là

hình chiếu của H xuống IP Xác định vị trí của P để tứ

giác PEH F có diện tích lớn nhất

***********************************************

ĐỀ 2 (Đề thi vào lớp 10 - Năm học 95 - 96)

Bài 1: a) Rút gọn biểu thức:

A =

2

+

y x

y x xy y

x

y y x

x

Với x > 0; y > 0; x ≠0

b) Cho các hàm số: f(x) = 6x2 ; g(x) = 5x – 1

Tìm số α sao cho f(α ) =g(α )

Bài 2: Cho đường thẳng (d) có pt: y = 3(2m+3) - 2mx và

parabol (P) có pt: y = x2

a) Định m để hàm số y = 3(2m + 3) - 2mx luôn đồng biến

b) Biện luận theo m số giao điểm của (d) và (P) c) Tìm m để (d) cắt (P) tại 2 điểm có hoành độ cùng dấu

Bài 3: Cho hình chóp S.ABCD có đáy ABCD là hình

vuông và cạnh SA vuông góc với đáy GoÏi O là giao điểm của AC và BD

a) Chứng minh các mặt bên của hình chóp là các tam giác vuông

b) Vẽ AH ⊥ SO Chứng minh : AH ⊥ (SBD)

Bài 4: Cho tam giác ABC đều Một đường thẳng song

song với AC cắt AB,BC theo thứ tự tại M,P Gọi H là trọng tâm của tam giác PMB; E là trung điểm của AP và

N là chân đường vuông góc kẻ từ H đến MP Chứng minh:

a) PC = 2 NE b) ·HNE=HPC· c)∆HNE ∼ ∆HPC d)∆ HEC vuông

***********************************************

ĐỀ 3 (Đề thi vào lớp 10 – Năm học 96 - 97)

Bài 1: Cho biểu thức :

A = x2 – 5x –( 3 + x)2 + 6 x + 18 a) Rút gọn và chứng tỏ A là 1 số không âm

b) Tìm giá trị của x để A = 16

Bài 2: Cho pt : x2 – 2( m-1)x + 2m - 3 = 0 (1) a) Chứng minh pt (1) luôn có nghiệm với mọi m

b) Với giá trị nào của m thì pt (1) có một nghiệm là 2, tìm nghiệm còn lại

c) Gọi x1, x2 là các nghiệm của pt (1) và đặt

B = x1 x2 + x1 x2 Chứng minh : B = 4m2 – 10 m + 1 Với giá trị nào của m thì B đạt GTNN Tìm GTNN của B?

Bài 3: Cho hệ phương trình:

= +

+

= +

m y x

m y x

2 5 3

2

a) Giải hệ pt khi m = 2 b) Với giá trị nào của m thì hệ pt có nghiệm nguyên

Bài 4:

Cho (O; R) và đường thẳng xy tiếp xúc với (O) tại A

Điểm B lấy bất kì trên (O), kẻ BH vuông góc xy tại H

a) Chứng minh: BA là phân giác của góc OBH

b) Chứng minh: Phân giác ngoài của góc OBH luôn đi qua 1 điểm cố định khi B di động trên (O)

c) GoÏi M là giao điểm của BH với phân giác của góc AOB Tìm quĩ tích của M khi B di động trên (O)

***********************************************

ĐỀ 4 (Đề thi vào lớp 10 – Năm học 97- 98)

Bài 1: Cho hai biểu thức : A = 2

x

x + 2 và 2

2

1

x B

x

+

Với x > 0 và x ≠1 a) Chứng tỏ rằng: B =

1

+

x x

b) Tìm những giá trị của x để A.B = x – 3

Bài 2: Cho hàm số y = ( m2 - 2) x2 Tìm m để đồ thị hàm số đi qua điểm A( 2;1) Với giá trị của m tìm được ở câu a:

+ Vẽ đồ thị (P) của hàm số + Chứng tỏ đường thẳng 2x – y -2 = 0 tiếp xúc với (P) và tính tọa độ tiếp điểm

+ Tìm GTLNvà GTNN của hàm số trên [ − 4 ; 3 ]

Bài 3: Hai người đi bộ khởi hành cùng một lúc ở hai địa

điểm A và B cách nhau 18 km.Họ đi ngược chiều nhau và gặp nhau sau khi mỗi người đã đi được 2 giờ Biết rằng cứ

đi 1 km thì người đi từ A đi lâu hơn người đi từ B là 3 phút Tính vận tốc của mỗi người?

Bài 4: Cho ∆ABC đều nội tiếp (O) Trên cung nhỏ AB lấy M, trên dây MC lấy N sao cho MB = CN

a) CMR: ∆AMN đều b) Kẻ đường kính BD của(O) Chứng minh : MD là đường trung trực của AN

c) Tiếp tuyến kẻ từ D của (O) cắt tia BA và MC lần lượt tại T, K Tính số đo bằng độ của góc tổng·NAT+NKT· d) Khi M di động trên cung nhỏ AB, hãy xác định vị trí của M để tổng MA + MB lớn nhất ?

**********************************************

Trang 2

ĐỀ 5 (Đề thi vào lớp 10 – Năm học 98- 99)

Bài 1: a) Cho pt : (m + 2 ) x2 - 2mx + m – 1 = 0 (m ≠-2)

+ Với giá trị nào của m thì pt : vô nghiệm; có nghiệm

kép; có hai nghiệm phân biệt

+ Xác định m để pt có một nghiệm là 2; tìm nghiệm còn

lại

b) Trên đồ thị hàm số y = x2 lấy A và B lần lượt có

hoành độ là -2 và 1 Viết pt đường thẳng qua A và B

Điểm C(0;2) có thuộc đường thẳng AB này không ?

Bài 2: Một thuyền máy xuôi dòng theo khúc sông dài 28,5

km rồi quay về một đoạn 22,5 km hết tất cả 8 h Tìm vận

tốc riêng của thuyền máy, biết vận tốc của dòng nước :

2,5 km/h

Bài 3: Giải hệ pt :

= +

= +

0 1 4 9

0 1 6 4

x y

y x

Bài 4: trên đường tròn tâm O lấy một dây cung cố định

AB khác đường kính và hai điểm C, D di động trên cung

lớn AB sao cho AD // BC

a) CMR : Hai cung AB , CD bằng nhau

b) Khi AC và BD cắt nhau tại M ; C và D di động theo

điều kiện trên thì điểm M chạy trên đường nào? Hãy xác

định đường đó?

c) Một đường thẳng d đi qua M song song với AD CMR: d

chứa đường phân giác của góc AMB và d luôn đi qua một

điểm cố định mà ta đặt là điểm I

d) CMR : IA, IB là hai tiếp tuyến của (O) kẻ từ điểm I

***********************************************

ĐỀ 6: (Đề thi vào lớp 10 – Năm học 1999-2000)

Bài 1: Giải hệ pt sau bằng đồ thị rồi thử lại bằng phép

tính:

= +

=

0 2

6 2

2 y

x

x y

Bài 2: Tính :

16 15

1

3 2

1 2

1

1

+ + + +

+ +

Bài 3: Cho pt : x2 + mx – m -2 = 0

a) Với giá trị nào của m thì pt có hai nghiệm phân biệt

b) Lập pt có hai nghiệm u = ( x1 – 1 ) : (x1 +1) ;

v = ( x2 – 1) : ( x2 + 1) Tìm m để x1 + x2 đạt giá trị nhỏ nhất

Bài 4: Cho đường tròn (O; R) đường kính AB cố định

Trên tia BA lấy điểm S cố định (OS > R) Kẻ cát tuyến SCD khác SAB, kẻ dây cung DM vuông góc với AB, CM cắt AB tại K

a) CMR : Hai góc CKA và DKB bằng nhau

b) BC cắt AD tại H CMR : CHKA là tứ giác nội tiếp

c) Cho AC cắt BD tại P CMR: 3 điểm P, H , K thẳng hàng

d) CMR : Hai tam giác OKC và OSC đồng dạng Suy ra

CM đi qua một điểm cố định

*********************************************

ĐỀ 7: (Đề thi vào lớp 10 – Năm học 2000-2001)

Bài 1: Tính chiều dài và chiều rộng của một hình chữ nhật

có chu vi bằng 28m và đường chéo bằng 10m

Bài 2: Cho biểu thức: A =

) 9

; 4

; 0 ( 6 5

6 3

3 2

1

>

+

+ +

x x

a) Rút gọn biểu thức A

b) Tìm các giá trị nguyên của x để A có giá trị nguyên

Bài 3: a) Vẽ đồ thị (P) của hàm số y = -2x2 b) Một đường thẳng (D) cắt trục hoành tại điểm có hoành độ bằng 2, cắt trục tung tại điểm có tung độ bằng -4 Viết

pt đường thẳng (D) và tính tọa độ giao điểm A,B của (P) và (D)

c) Lấy trên (P) một diểm M có hoành độ bằng -1 Viết pt đường thẳng (D1) đi qua M và có hệ số góc bằng k Tùy theo giá trị của k hãy tìm số giao điểm của (D1) và (P)

Bài 4: Cho tam giác AOB cân tại đỉnh O, trên cạnh AB

lấy điểm M tùy ý ( MA ≠MB) Người ta vẽ hai đường tròn cắt nhau như sau:

- Đường tròn (C) , có tâm C ở trên cạnh OA và đi qua hai điểm A, M ( C khác O và A)

- Đường tròn (D), có tâm D ở trên cạnh OB và đi qua hai điểm B, M ( D khác O và B)

- Hai đường tròn này cắt nhau tại điểm thứ hai là N

a) CMR: Tứ giác ODMC là một hình bình hành

b) CMR: CD vuông góc với MN Suy ra hai tam giác ANB và CMD đồng dạng

c) Tính số đo góc MNO

ĐỀ 8: (Đề thi vào lớp 10 – Năm học 2001-2002)

Bài 1: a) Hãy sắp xếp ba số sau theo thứ tự từ nhỏ đến

lớn: 2 3; 3 2; 16

2 1

b) Cho biểu thức :

3

1 5 20

+ Rút gọn biểu thức A

+ Tìn x để A = 4

Bài 2: Trong mặt phẳng tọa độ cho ba điểm : A(-3; 0);

B(3;2) ; C(6;3) a) Viết pt đường thẳng qua A và B Hỏi ba điểm A,B,C có thẳng hàng hay không?

b) Gọi (d) là đường thẳng qua a,b,c và (P) là parabol có

pt : y = m x2 ( m ≠0)

Định m để (P) và (d) tiếp xúc Tìm tọa độ tiếp điểm

Bài 3: Hai vòi nước chảy vào một bể không có nước và

chảy đầy bể sau 1h48’ Nếu chảy riêng thì vòi 1 chảy đầy bể nhanh hơn vòi 2 là 1h30’ Hỏi chảy riêng mỗi vòi sẽ chảy đầy bể trong bao lâu?

Bài 4: Cho tam giác cân ABC ( AB = AC, góc A nhọn),

đường cao Ah, lấy điểm M bất kì trên đoạn BH ( khác B và H ) Từ M kẻ MP vuông góc với AB( P thuộc AB) ;

MQ vuông góc với AC ( Q thuộc AC) ; MQ cắt AH tại K a) CMR: Năm điểm A,P,M,H, Q nằm trên một đường tròn, xác định tâm O của đường tròn này

b) CMR: OH vuông góc với PQ

c) Gọi I là trung điểm của KC > Tính số đo góc OQI

Bài 5: Cho P =

1

1

+

x

x

Tìm giá trị nguyên của x để P nhận giá trị nguyên

**********************************************

ĐỀ 9 (Đề thi vào lớp 10 – Năm học 2002-2003)

Bài 1: a) Tính:

b) Giải pt : (7− x)(8− x)=x+11

Bài 2: Cho pt : 2x2 + ( k -9 ) x + k2 + 3k + 4 = 0 (1)

Trang 3

a) Tìm k để pt (1) có nghiệm kép Tính nghiệm

kép đó

b) Có giá trị nào của k để pt (1) có hai nghiệm số

x1, x2 thỏa hệ thức

x1x2 + k(x1 + x2 ) ≥14 không ?

Bài 3: Quãng đường AB dài 270 km Haiô tô khởi hành

cùng một lúc đi từ A đến B Ô tô thứ nhất chạy nhanh hơn

xe thứ hai là 12km/h nên đến B trước ô tô thứ hai 40 phút

Tìm vận tốc của mỗi xe

Bài 4: Cho tam giác cân ABC (AB = AC ) nội tiếp trong

(O) M là 1 điểm trên cung nhỏ AC Nối MA, MB, MC và

kéo dài CM về phía M ta có Mx

a) CMR : góc AMB bằng góc AMx

b) Tia phân giác của góc BMC gặp đường tròn tại

D Chứng minh rằng dây AD là dây lớn nhất của (O)

c) Nếu cho điểm M chuyển động trên cung nhỏ

AC thì trung điểm I của dây BM chuyển động trên đường

nào ?

*********************************************

ĐỀ 10 : (Đề thi vào lớp 10 – Năm học 2003- 2004)

Bài 1: a) Tính ( ) )

2 5 2 5 ( 5 4 9

+ +

b) Giải pt : 25x+25 =15+2 x+1

Bài 2: Cho pt : x2 – 2( m+1) x+ 2m +10 = 0 (1)

a) Giải pt (1) với m = 1

b) Định m để pt ( 1) có nghiệm kép Tính nghiệm kép đó

c) Trong trường hợp pt (1) có hai nghiệm khác 0 là x1; x2

Tìm giá trị của m sao cho

2

1 1 1

2 2 2 1

= +

x x

Bài 3: Trong mặt phẳng tọa độ cho điểm A(-1;2) và đường

thẳng (D1 ) : y = -2x + 3

a) Vẽ (D1) Điểm A có thuộc (D1) không ? Tại sao?

b) Lập pt đường thẳng (D2) đi qua A và song song với

đường thẳng (D1) Tính khoảng cách giữa hai đường

thẳng (D1) và (D2)

Bài 4: Cho nửa đường tròn tâm O đường kính AB Vẽ các

tiếp tuyến A x, By với nửa đường tròn M là một điểm

của cung AB (M khác A và B) ; C là một điểm của đoạn

OA (Ckhác A và O ) Đường thẳng qua M vuông góc với

MC cắt A x tại P ; đường thẳng qua C vuông góc với CP cắt By tại điểm Q Gọi D là giao điểm của CP và AM; E là giao điểm của CQ và BM

a) Chứng minh tứ giác ACMP, CEMD nội tiếp

b) Chứng minh: DE vuông góc với A x

c) Chứng minh ba điểm P, M và Q thẳng hàng

***********************************************

ĐỀ 11: (Đề thi vào lớp 10 – Năm học 2004-2005)

Bài 1: a) Thực hiện phép tính:

11 7 5

) 1 7

− (không dùng máy tính bỏ túi)

b) Giải pt : 4x−20 =x−20

Bài 2: Cho các đường thẳng có pt sau: (D1) : y= 3x + 1;

(D2) : y = 2x-1 và (D3) : y= (3 – m)2 x+ m - 5( với m ≠ 3)

a) Tìm tọa độ giao điểm A của (D1) và (D2)

b) Tìm giá trị của m để các đường thẳng (D1) ; (D2) ; (D3) đồng qui

c) Gọi B là giao điểm của (D1) với trục hoành, C là giao điểm của đường thẳng (D2) với trục hoành Tính đoạn BC

Bài 3: Cho hai đường tròn bằng nhau (O1; R) và (O2;R) cắt nhau tại hai điểm A và B sao cho AB = R Kẻ các đường kính AO1C và AO2D

Trên cung nhỏ BC lấy điểm M ( M khác B và C) Giao điểm thứ hai của tia MB với đường tròn (O2;R) là P Các tia CM và PD cắt nhau tại Q; MP và AQ cắt nhau tại K

a) Chứng minh tứ giác AMPQ nội tiếp đường tròn

b) Chứng minh tam giác MPQ là một tam giác đều

c) Tính tỉ số

AQ

AK

Bài 4: Cho pt bậc hai :

2x2 + 2(m+1) x + m2 + 4m + 3 = 0 (1)

Gọi x1 , x2 là hai nghiệm số của pt (1) Tính giá trị lớn nhất và giá trị nhỏ nhất của biểu thức T = x1+x2 +5m

***********************************************

ĐỀ 12 : (Đề thi vào lớp 10 – Năm học 2006- 2007)

BaØi 1: Không dùng máy tính bỏ túi.

a ) Tính : A = 8 − 12 − ( 2 2 + 3 )

b) Giải hệ pt :

=

= +

7 2

4

y x

y x

Bài 2: Trong mặt phẳng tọa độ O xy, cho parabol (P) :

y = -x2 và đường thẳng (d) : y = 2x

a) Vẽ đồ thị (P)

b) Đường thẳng (d) đi qua gốc tọa độ và cắt (P) tại điểm thứ hai A Tính độ dài đoạn thẳng OA

Bài 3: Cho tam giác ABC, vẽ hai đường cao BF và CE ( F

thuộc đường thẳng AC và E thuộc đường thẳng AB) Gọi giao điểm của BF và CE là H

a) Chứng minh 4 điểm B, E, F, C cùng thuộc một đường tròn Hãy xác định tâm O của đường tròn đó?

b) Chứng minh: AH vuông góc với BC

c) Kéo dài AH cắt BC tại K Chứng minh KA là phân giác của góc EKF

d) Giả sử góc BAC của tam giác ABC là một góc tù Trong trường hợp này hãy chứng minh hệ thức :

1

= + +

CF

AF BE

AE HK AK

Bài 4: a) Giải pt : 6x4 -7x2 -3 = 0

b) Với những giá trị nguyên nào của x thì biểu thức :

2

6 7 2

− +

+ +

=

x x

x x B

nhận được giá trị nguyên

***********************************************

ĐỀ 13 : (Đề thi vào lớp 10 – Năm học 2007- 2008)

BaØi 1: Không dùng máy tính bỏ túi.

a ) Tính giá trị biểu thức: 2 2

3 1− 3 1

b) Giải phương trình : 2x2 + 7x – 4 = 0

Bài 2:

a) Vẽ đồ thị (P) của hàm số 1 2

2

y = − x b) Hai đường thẳng (D1) : x – 3y = 4 va ø(D2) : 2

2

x y

+ = cắt nhau Tìm tọa độ giao điểm của 2 đường thẳng đó bằng phương pháp đại số Chứng tỏ ba đường thẳng (D1), (D2) và (D3) : y = x – 4 đồng qui

Trang 4

Bài 3: Cho phương trình bậc hai ẩn x, m là tham số:

x2 + mx + 2m – 4 = 0 (1)

a) Chứng tỏ rằng phương trình (1) luôn có nghiệm với

mọi giá trị của m

b) Gọi x1, x2 là hai nghiệm phân biệt của phương trình

(1) Tìm các giá trị nguyên dương của m để biểu thức

1 2

x x

A

x x

=

+ có giá trị nguyên.

Bài 4: Cho nửa đường tròn tâm O, đường kính AB và C là

điểm chính giữa của cung AB Trên cung nhỏ AC lấy

điểm M túy ý (khác A và C), đường thẳng AM cắt đường

thẳng BC tại D

a) Chứng minh ·DMCABC

b) Trên tia BM lấy điểm N sao cho BN = AM Chứng

minh MC = NC

c) Đường tròn đi qua ba điểm A, C, D cắt đoạn OC tại

điểm thứ hai I

i/ Chứng minh AI // MC

ii/ Tính tỉ số OI

CD

***********************************************

KỲ THI VÀO LỚP 10 LÊ QUÝ ĐÔN

Năm học 2001 – 2002 (VÒNG 1)

Bài 1: Cho biểu thức

: 1

1

A

x

+

a) Tìm điều kiện của x để A tồn tại rồi rút gọn biểu

thức A

b) Tính giá trị của biểu thức A với x = 9 4 5−

c) Tìm giá trị của x để A < 0

Bài 2: Chứng minh bất đẳng thức :

Bài 3: Hai chiếc ôtô cùng xuất phát từ A để đến B Ôtô

thứ nhất trong nửa thời gian đầu đi với vận tốc 50 km/h và

nửa thời gian sau đi với vận tốc 40 km/h Ôtô thứ hai

trong nửa quãng đường đầu đi với vận tốc 40 km/h và nửa

q/đường sau đi với vận tốc 50 km/h Hỏi ôtô nào đến B

trước ?

Bài 4: Tìm tất cả các giá trị của x, y, z ∈R thỏa mãn đẳng thức:

0

xy + zx− + =y z

Bài 5: Cho tứ giác ABCD nội tiếp trong nửa đường tròn

đường kính AD Trên đoạn AC lấy điểm E sao cho hai góc

·ABE·CBD bằng nhau

a) Chứng minh : AB CD + BC DA = AC BD b) Tính đoạn thẳng AD biết rằng AB = BC = 2

5 (cm) và CD = 6 (cm)

AB AD BC DC AC

AB BC CD DA BD

**********************************************

KỲ THI VÀO LỚP 10 LÊ QUÝ ĐÔN

Năm học 2002 – 2003 (VÒNG 1) Bài 1: Không dùng máy tính để giải bài này

a) Tính giá trị của biểu thức

A=(4 + 15)( 5 − 3) ( 4 − 15)

b) Giải phương trình:

(x2 + x) ( x2 + x- 1 - 2 ) + 2 = 0

Bài 2: Xác định a và b để đường thẳng có

phương trình y = ax + b (a ≠ 0) tiếp xúc với parabôn

y = 1 2

2 x tại điểm có hoành độ bằng (-1).

Bài 3:

Lúc 7 giờ sáng, một ôtô khởi hành từ tỉnh A đi tỉnh B cách A 120 km Đi được 2

3quãng đường xe bị hỏng máy

nên phải dừng lại sửa mất 20 phút, rồi lại tiếp tục đi với vận tốc chậm hơn lúc đầu 8 km mỗi giờ và đến B lúc 10 giờ sáng cùng ngày Hỏi ôtô bị hỏng máy lúc mấy giờ ?

Bài 4: Cho đường tròn tâm O có đường kính

AB = 2R cố định, M là một điểm trên đường tròn (M khác điểm A và B) Gọi d là tiếp tuyến với đường tròn tại A; P và Q lần lượt là chân đường vuông góc kẻ từ M xuống đường thẳng AB và d; I là giao điểm của AM và PQ

a) Chứng minh tam giác AIO là tam giác vuông

b) Tiếp tuyến tại M với đường tròn (O) cắt d tại điểm T Chứng minh 4 điểm Q, T, M, I cùng ở trên một đường tròn

c) Xác định vị trí điểm M để tam giác ATM là tam giác đều Trong trường này, hãy tính theo R diện tích phần hình tam giác ATM ở bên trong hình tròn (O) ứng với vị trí điểm M tìm được

*********************************************

KỲ THI VÀO LỚP 10 LÊ QUÝ ĐÔN

Năm học 2002 – 2003 (VÒNG 2)

Bài 1: Không dùng máy tính để giải bài này.

a) So sánh hai số a = 28 + 4 5 và b = 18 b) Rút gọn biểu thức:

2 5 2 6 2 5 2 6

Bài 2: Cho biểu thức P = 1 1

a b − với a, b là các số nguyên dương Tìm hệ thức giữa a và b để P đạt giá trị dương nhỏ nhất

Bài 3: Cho phương trình: mx2 + (2m – 1)x + m = 0 a) Tìm m để phương trình có hai nghiệm số đối nhau Giải phương trình với giá trị m tìm được

b) Với giá trị nguyên nào của m thì phương trình có nghiệm số là số hữu tỉ

Bài 4: Cho hai đường thẳng u và v vuông góc với nhau tại

điểm O, A là điểm cố định cách đều hai đường thẳng u và

v (A khác O) Một góc vuông xAy quay quanh đỉnh A, đường thẳng Ax cắt u và v theo thứ tự ở P và Q, đường thẳng Ay cắt u và v theo thứ tự ở R và S

a) Chứng minh tam giác APS và AQR là những tam giác cân

b) Gọi M, N, I lần lượt là trung điểm của các đoạn thẳng

SP, QP và QR Chứng minh tam giác MNI vuông cân c) Đường thẳng SP cắt QR tại H Chứng minh H di động trên một đường cố định khi góc xAy quay quanh đỉnh A d) Tìm quỹ tích các điểm T của hình vuông AQTR mà các cạnh ở đỉnh A là AQ và AR

Trang 5

Bài 5: Cho nửa đường tròn đường kính AD, C là trung

điểm của cung AB Trên dây BC lấy hai điểm I và J sao cho CI = IJ = JB Nối AI và AJ lần lượt cắt nửa đường tròn tại M và N Tính tỉ số AM

AN .

Ngày đăng: 07/07/2014, 23:00

TỪ KHÓA LIÊN QUAN

w