1. Trang chủ
  2. » Giáo án - Bài giảng

Đê ĐA Toán 11HKII Phan Châu Trinh Đà Nẵng

4 316 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 4
Dung lượng 180,5 KB

Nội dung

TRƯỜNG THPT PHAN CHÂU TRINH ĐỀ THI HỌC KỲ II NĂM HỌC 2009-2010 TP. ĐÀ NẴNG MÔN TOÁN 11- THỜI GIAN : 90 PHÚT I. Phần chung: Câu I: 1. (1đ) Cho hàm số = + 2 1 ( ) 1 cos 2 f x x . Tính ' 12 f π    ÷   . 2. (1đ) Cho hàm số 2 ( ) 1 x f x x = + . Tính f ‘ (x). Câu II. 1. (1đ) Cho hàm số : 2 4 2 1 1 víi 0 ( ) 1 víi 0 x x f x x x m x  + −  ≠ =  +  − =  (m là tham số) Tìm m để hàm số f liên tục tại 0x = . 2. (1đ) Cho phương trình : ( ) 4 2009 5 1 32 0m m x x+ + + − = (m là tham số) Chứng minh phương trình trên luôn có ít nhất một nghiệm dương với mọi giá trị của tham số m. Câu III.(3 điểm). Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, SA vuông góc với mp(ABCD) và SA = a. a) Chứng minh các mặt bên của hình chóp là những tam giác vuông. b) Tính góc giữa hai mặt phẳng (SCD) và (ABCD). c) Tính khoảng cách giữa hai đường thẳng AB và SC. II. Phần riêng: Học sinh chỉ chọn 1 trong 2 phần : Theo chương trình nâng cao: Câu IV.a. (1đ) Cho hàm số 1 2 1 x y x − = + . Viết phương trình tiếp tuyến của đồ thị hàm số đã cho, biết tiếp tuyến song song với đường thẳng 3y x= . Câu V.a 1. (1đ) Tính 1 2 1 lim 1 3 x x L x x →+∞ + = + − . 2. (1đ) Tính L 2 = 1 632 lim 23 1 − −++ → x xxx x Theo chương trình chuẩn: Câu IV b Cho hàm số y = f(x) = 1 1 + − x x Viết phương trình tiếp tuyến của đồ thị hàm số tại điểm M (1; 0) Câu V b. Tìm các giới hạn sau: 1. 3 2 3 2 2 2 lim 2 1 x x x x x x →+∞ + + + − 2. 2 1 3 2 lim 1 x x x → + − − ………… Hết……………. Đáp án và biểu điểm Nội dung Điểm Câu I 1 ( ) ( ) ( ) ( ) ( ) ( ) ' 2 ' 2 2 2 2 2 2 2 2 1 cos 2 2cos2 cos2 (2 cos2 )( 2sin2 ) 2sin 4 '( ) 1 cos 2 1 cos 2 1 cos 2 1 cos 2 x x x x x x f x x x x x + − = − = − = − = + + + + 0.75 16 3 ' 12 49 f π   =  ÷   0.25 2 ( ) ( ) ( ) ( ) ' 2 2 2 2 2 2 3 2 2 2 1 . ( )'. 1 1 . 1 1 '( ) 1 1 1 x x x x x x x x f x x x x + − + − + + = = = + + + 1 Câu II 1 ( ) ( ) ( ) ( ) 2 2 4 2 0 0 0 0 2 2 2 2 1 1 1 1 lim ( ) lim lim lim 2 1 1 1 1 1 1 x x x x x x f x x x x x x x x → → → → + − = = = = + + + + + + + 0.5 Hàm số f liên tục tại x = 0 0 lim ( ) (0) x f x f → ⇔ = 0.25 1 3 1 2 2 m m⇔ = − ⇔ = 0.25 2 Hàm số ( ) 4 2009 5 ( ) 1 32f x m m x x= + + + − là hàm đa thức nên liên tục trên ¡ , do đó nó liên tục trên đoạn [ ] 0 ; 2 . 0.25 (0) 32 0f = − < ; ( ) 2 2 4 2009 2009 2 1 1 1 (2) 1 2 2 0, 2 2 2 f m m m m m       = + + = − + + + > ∀ ∈    ÷  ÷         ¡ 0.5 Suy ra (0) (2) 0,f f m< ∀ ∈¡ nên phương trình f(x) = 0 có một nghiệm thuộc khoảng (0 ; 2) nên nó luôn có ít nhất một nghiệm dương với mọi giá trị của tham số m. 0.25 Câu III Câu 3 (3 điểm) F B D C A S E G  Hình vẽ đúng………………………………………………… ……………… … 0,5 a) Chứng minh các mặt bên là những tam giác vuông ……… ………………… 0,5 b) Xác định đúng [(SCD,(ABCD)] = · SDA ………………………. ………………… 0.25 Tính đúng · 45SDA = o ……………………… ………………… 0.25 c) Gọi E là hình chiếu của A lên SD, Kẽ EF//AB( F ∈ SC), kẽ FG //AE( G ∈ AB) Xác định đúng d(AB,SC) = GF = AE ………………. ………………………… 0.25 Tính đúng d(AB,SC) = 2 2 a Câu IVa Gọi ( ) 0 0 ;M x y là tiếp điểm của tiếp tuyến với đồ thị hàm số đã cho. Phương trình tiếp tuyến tại M có dạng 0 0 0 ( ) : '( )( )d y y f x x x− = − với ( ) ( ) 0 2 0 3 ' 2 1 f x x = + Tiếp tuyến song song với đường thẳng 3y x= khi và chỉ khi : ( ) 0 ' 3f x = ( ) ( ) 2 0 0 2 0 0 0 3 3 2 1 1 1 2 1 x x x x =  ⇔ = ⇔ + = ⇔  = − +  với 0 0x = thì 0 1y = − nên ta có phương trình tiếp tuyến là 1 ( ) : 3 1d y x= − với 0 1x = − thì 0 2y = nên ta có phương trình tiếp tuyến là 2 ( ) : 3 5d y x= + Câu Va 1 1 2 2 1 1 lim lim 1 1 1 3 1 3 x x x x L x x x x x x →+∞ →+∞ + + = =     + − + −  ÷  ÷     2 1 1 1 lim 2 1 1 3 x x x →+∞ + = = −   + −  ÷   2 : 10)63(lim 1 633 lim 2 1 23 1 =++= − −++ →→ xx x xxx xx Câu IVb 2 )1( 2 ' + = x y PTTT có dạng: y-y 0 = f’(x 0 )(x-x 0 ) với x 0 = 1; y 0 =0; f’(1)= 2 1 là: )1( 2 1 −= xy Câu Vb. 1 3 2 3 2 2 2 lim 2 2 1 x x x x x x →+∞ + + = + − 2 ( ) ( ) ( ) ( ) 2 2 2 1 1 2 3 2 3 2 3 2 lim lim 1 1 3 2 x x x x x x x x → → + − + + + − = − − + + ( ) ( ) 2 2 1 1 2 1 1 1 lim lim 2 3 2 1 3 2 x x x x x x x → → − + = = = + + − + + . TRƯỜNG THPT PHAN CHÂU TRINH ĐỀ THI HỌC KỲ II NĂM HỌC 2009-2010 TP. ĐÀ NẴNG MÔN TOÁN 11- THỜI GIAN : 90 PHÚT I. Phần chung: Câu I: 1. (1đ) Cho. = 0.25 1 3 1 2 2 m m⇔ = − ⇔ = 0.25 2 Hàm số ( ) 4 2009 5 ( ) 1 32f x m m x x= + + + − là hàm đa thức nên liên tục trên ¡ , do đó nó liên tục trên đoạn [ ] 0 ; 2 . 0.25 (0) 32 0f = − < ;

Ngày đăng: 06/07/2014, 15:00

TỪ KHÓA LIÊN QUAN

w