Xác định bậc của đa thức tổng.. Vẽ trung tuyến AM, trên tia đối tia MA lấy điểm D sau cho AM = MD.
Trang 1KIỂM TRA HỌC KÌ II NĂM HỌC 2009-2010
MÔN TOÁN KHỐI 7
Thời gian làm bài: 90 phút
-oOo -I PHẦN TRẮC NGHIỆM: ( 3 đ)
Câu 1 : Cho tam giác ABC vuông tại B Theo định lý Pitago, ta có:
a/ AB2 = AC2 + BC2 b/ AC2 = BC2 + CA2
c/ BC2= AB2 + AC2 d/ Câu a,b,c đều sai
Câu 2 : Đơn thức 2x2y đồng dạng với đơn thức:
Câu 3 : Hãy chọn kết luận đúng : Nếu DABC có Â < BÂ < CÂ thì:
a/ AB < AC < BC b/ AC < AB < BC c/ BC < AC < AB d/ AC < BC < AB Câu 4 : Nghiệm của đa thức x2 + x là:
a/ x = 0 b/ x = -1 c/ Câu a,b đều đúng d/ Câu a,b đều sai Câu 5 : Kết quả của phép tính 5xy – xy là:
Câu 6 : Trong một tam giác, đối diện với cạnh nhỏ nhất là:
a/ góc tù b/ góc nhọn c/ góc vuông d/ a,b,c đều sai Câu 7 : Kết quả điểm kiểm tra môn Toán của học sinh trong một tổ được ghi ở bảng sau:
Điểm trung bình cộng X của tổ là:
Câu 8 : Trong bảng cho ở câu 7, mốt của dấu hiệu là:
Câu 9 : Cho tam giác ABC có B = 90o , C = 30o Cạnh nhỏ nhất của tam giác là:
Câu 10 : Nếu tam giác ABC có AB = AC và Aˆ = 60o thì ta nói:
a/ DABC cân b/ DABC đều c/ DABC vuông d/ DABC vuông cân Câu 11 : Bậc của đa thức 8x2 y4 - 3y + 1 là:
Câu 12 : Giá trị của đa thức 1
2x – 2 tại x = 4 là:
Câu 13 : Cho 2x2y2 + = 5x2y2 Hãy chọn đơn thức thích hợp với chỗ trống:
a/ 3x2y2 b/ -3x2y2 c/ -7x 2 y 2 d/ 7x2y2
Câu 14 : Dạng thu gọn của đa thức 3x2 – 5x3 – 4 + x2 + 5x3 là:
a/ 10x5 + 3x2 – 4 b/ 4x 2 – 4 c/ -2x – 4 + x2 d/ -2x – 4 + 6x5
Câu 15 : Trong một tam giác vuông, đường trung tuyến ứng với cạnh huyền bằng:
a/ cạnh huyền b/
3
1
cạnh huyền c/
3
2
cạnh huyền d/
2
1
cạnh huyền
II PHẦN TỰ LUẬN : ( 7 đ)
Trang 2Câu 1: (2 đ)
a/ Tính (3x2y) (-7
6x2y2) b/ Tìm nghiệm của đa thức 2x – 10
Câu 2: (2,5 đ)
Cho đa thức A = x2 + 2xy – 4
B = x2 – 2xy – 5 a/ Tính A + B Xác định bậc của đa thức tổng
b/ Tính hiệu A – B
c/ Tính giá trị của B tại x = (-1), y = 1
Câu 3: (2,5 đ)
Cho tam giác ABC cân tại A Vẽ trung tuyến AM, trên tia đối tia MA lấy điểm D sau cho
AM = MD
a) Vẽ hình viết giả thuyết, kết luận (0,5 đ )
b/ Chứng minh AB = CD ( 0,75 đ )
c/ Chứng minh CM là tia phấn giác góc ACD ( 0,75 đ )
d/ Cho AB = 10cm, BC = 12cm, tính độ dài AM (0,5 đ )
-Hết-ĐÁP ÁN & BIỂU ĐIỂM
Trang 3I PHẦN TRẮC NGHIỆM: ( 3đ)
1 b 2 d 3 c 4 c 5 b 6 b 7 a
8 c 9 a 10 b 11 c 12 b 13 a 14 b 15 d
Mỗi câu chọn đúng được 0,2 đ
II PHẦN TỰ LUẬN: ( 7đ)
Câu 1: (2 đ)
a/ (3x2y) (-76x2 y2 ) = 3 (-76) (x2y x2 y2 ) 0,25 đ
= -21
= -7
Câu 2: (2,5đ)
c/ Tại x = -1,y = 1 ta có B = (-1)2 – 2.(-1).1 – 5 = -2 0,5đ
Câu 3: (2,5đ)
B
A
1/ Vẽ hình AB = AC và có kí hiệu bằng nhau
0,25đ
BM = CN và có kí hiệu bằng nhau
AM = MD
BM = M C, AM = M D
KL a) AB = CD b) CM la tia phan
g iac cua g oc ACD c) Cho AB = 10cm,
AC = 12cm Tinh AM
0,25đ
2/ Câu a :
Chứng minh được DBMA = DCMD (cgc) (1) 0,5đ
3/ Câu b : Vì AB = AC (GT)
Nên AC = CD
Trang 4Ta chứng minh được D AMC = DDMC ( ccc)
Vậy CM là tia phân giác của góc ACD
4/ Câu c :
BM = MC = 6CM
Các cách giải khác: nếu đúng, cho điểm tương đương.