1. Trang chủ
  2. » Giáo án - Bài giảng

58 de thi HSG toan hay

29 229 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 29
Dung lượng 1,19 MB

Nội dung

4:38:34 a7/p7Chu Thị Khánh Vân đề số 1 Câu 1: Cho x = 2 2 2 2 b c a bc + ; y = 2 2 2 2 ( ) ( ) a b c b c a + Tính giá trị P = x + y + xy Câu 2: Giải phơng trình: a, 1 a b x+ = 1 a + 1 b + 1 x (x là ẩn số) b, 2 2 ( )(1 )b c a x a + + + 2 2 ( )(1 )c a b x b + + + 2 2 ( )(1 )a b c x c + + = 0 (a,b,c là hằng số và đôi một khác nhau) Câu 3: Xác định các số a, b biết: 3 (3 1) ( 1) x x + + = 3 ( 1) a x + + 2 ( 1) b x + Câu 4: Chứng minh phơng trình: 2x 2 4y = 10 không có nghiệm nguyên. Câu 5: Cho ABC; AB = 3AC. Tính tỷ số đờng cao xuất phát từ B và C Đề số 2 Câu 1: Cho a,b,c thoả mãn: a b c c + = b c a a + = c a b b + Tính giá trị M = (1 + b a )(1 + c b )(1 + a c ) Câu 2: Xác định a, b để f(x) = 6x 4 7x 3 + ax 2 + 3x +2 Chia hết cho y(x) = x 2 x + b Câu 3: Giải PT: a, (x-4) (x-5) (x-6) (x-7) = 1680. b, 4x 2 + 4y 4xy +5y 2 + 1 = 0 Câu 4: Tìm giá trị lớn nhất của phân số mà tử số là một số có 3 chữ số mà mẫu là tổng các chữ số của nó. Câu 5: Cho ABC cân tại A, trên AB lấy D, trên AC lấy E sao cho:AD = EC = DE = CB. a, Nếu AB > 2BC. Tính góc à A của ABCV b, Nếu AB < BC. Tính góc à A của HBCV . 4:38:34 a7/p7Chu Thị Khánh Vân đề số 3 Câu 1:Phân tích thành nhân tử: a, a 3 + b 3 + c 3 3abc b, (x-y) 3 +(y-z) 3 + (z-x) 3 Câu 2: Cho A = 2 2 2 (1 ) 1 x x x + : 3 3 1 1 ( )( ) 1 1 x x x x x x + + + a, Rút gọn A b, Tìm A khi x= - 1 2 c, Tìm x để 2A = 1 Câu 3: a, Cho x+y+z = 3. Tìm giá trị nhỏ nhất của M = x 2 + y 2 + z 2 b, Tìm giá trị lớn nhất của P = 2 ( 10) x x + Câu 4: a, Cho a,b,c > 0, CMR: 1 < a a b+ + b b c+ + c c a+ < 2 b, Cho x,y 0 CMR: 2 2 x y + 2 2 y x x y + y x Câu 5: Cho ABCV đều có độ dài cạnh là a, kéo dài BC một đoạn CM =a a, Tính số đo các góc ACMV b, CMR: AM AB c, Kéo dài CA đoạn AN = a, kéo dài AB đoạn BP = a. CMR MNPV đều. đề số 4 Câu 1: Phân tích thành nhân tử: a, a 8 + a 4 +1 b, a 10 + a 5 +1 Câu 2: a, Cho a+b+c = 0, Tính giá trị của biểu thức: A = 2 2 2 1 b c a+ + 2 2 2 1 c a b+ + 2 2 2 1 a b c+ b, Cho biểu thức: M = 2 2 3 2 15 x x x + + Rút gọn M + Tìm x Z để M đạt giá trị nguyên. Câu 3: a, Cho abc = 1 và a 3 > 36, CMR: 2 3 a + b 2 + c 2 > ab + bc + ca b, CMR: a 2 + b 2 +1 ab + a + b 4:38:34 a7/p7Chu Thị Khánh Vân Câu 4: a, Tìm giá trị nhỏ nhất của A = 2x 2 + 2xy + y 2 - 2x + 2y +1 b, Cho a+b+c= 1, Tìm giá trị nhỏ nhất P = a 3 + b 3 + c 3 + a 2 (b+c) + b 2 (c+a) + c 2 (a+b) Câu 5: a, Tìm x,y,x Z biết: x 2 + 2y 2 + z 2 - 2xy 2y + 2z +2 = 0 b, Tìm nghiệm nguyên của PT: 6x + 15y + 10z = 3 Câu 6: Cho ABCV . H là trực tâm, đờng thẳng vuông góc với AB tại B, với AC tại C cắt nhau tại D. a, CMR: Tứ giác BDCH là hình bình hành. b, Nhận xét mối quan hệ giữa góc à A và à D của tứ giác ABDC. Đề số 5 Câu 1: Phân tích thành nhân tử: a, (x 2 x +2) 2 + (x-2) 2 b, 6x 5 +15x 4 + 20x 3 +15x 2 + 6x +1 Câu 2: a, Cho a, b, c thoả mãn: a+b+c = 0 và a 2 + b 2 + c 2 = 14. Tính giá trị của A = a 4 + b 4 + c 4 b, Cho a, b, c 0. Tính giá trị của D = x 2003 + y 2003 + z 2003 Biết x,y,z thoả mãn: 2 2 2 2 2 2 x y z a b c + + + + = 2 2 x a + 2 2 y b + 2 2 z c Câu 3: a, Cho a,b > 0, CMR: 1 a + 1 b 4 a b+ b, Cho a,b,c,d > 0. CMR: a d d b + + d b b c + + b c c a + + c a a d + 0 Câu 4: a, Tìm giá trị lớn nhất: E = 2 2 2 2 x xy y x xy y + + + với x,y > 0 b, Tìm giá trị lớn nhất: M = 2 ( 1995) x x + với x > 0 Câu 5: a, Tìm nghiệm Z của PT: xy 4x = 35 5y b, Tìm nghiệm Z của PT: x 2 + x + 6 = y 2 Câu 6: Cho ABCV M là một điểm miền trong của ABCV . D, E, F là trung điểm AB, AC, BC; A, B, C là điểm đối xứng của M qua F, E, D. a, CMR: ABAB là hình bình hành. b, CMR: CC đi qua trung điểm của AA Đề số 6 Câu 1: Cho a x y+ = 13 x z+ và 2 169 ( )x z+ = 27 ( )(2 )z y x y z + + Tính giá trị của biểu thức A = 3 2 2 12 17 2 2 a a a a + 4:38:34 a7/p7Chu Thị Khánh Vân Câu 2: Cho x 2 x = 3, Tính giá trị của biểu thức. M = x 4 - 2x 3 + 3x 2 - 2x + 2 Câu 3: a, Tìm giá trị nhỏ nhất của M = x(x+1)(x+2)(x+3) b, Cho x,y > 0 và x + y = 0, Tìm giá trị nhỏ nhất của N = 1 x + 1 y Câu 4: a, Cho 0 a, b, c 1. CMR: a 2 + b 2 + c 2 1+ a 2 b + b 2 c + c 2 a b, Cho 0 <a 0 <a 1 < < a 1997 . CMR: 0 1 1997 2 5 8 1997 a a a a a a a + + + + + + + < 3 Câu 5: a,Tìm a để PT 4 3x = 5 a có nghiệm Z + b, Tìm nghiệm nguyên dơng của PT: 2 x x y z+ + + 2 y y x z+ + + 2 z z x y+ + = 3 4 Câu 6: Cho hình vuông ABCD, trên CD lấy M, nối M với A. Kẻ phân giác góc ã MAB cắt BC tại P, kẻ phân giác góc ã MAD cắt CD tại Q. CMR PQ AM đề số 7 Câu 1: Cho a, b, c khác nhau thoả mãn: 2 2 2 2 b c a bc + + 2 2 2 2 c a b ac + + 2 2 2 2 a b c ab + = 1 Thì hai phân thức có giá trị là 1 và 1 phân thức có giá trị là -1. Câu 2: Cho x, y, z > 0 và xyz = 1. Tìm giá trị lớn nhất A = 3 3 1 1x y+ + + 3 3 1 1y z+ + + 3 3 1 1z x+ + Câu 3: Cho M = a 5 5a 3 +4a với a Z a, Phân tích M thành nhân tử. b, CMR: M M 120 a Z Câu 4: Cho N 1, n N a, CMR: 1+ 2+ 3+ +n = ( 1) 2 n n + b, CMR: 1 2 +2 2 + 3 2 + +n 2 = ( 1)(2 1) 6 n n n+ + Câu 5: Tìm nghiệm nguyên của PT: x 2 = y(y+1)(y+2)(y+3) Câu 6: Giải BPT: 2 2 2 1 x x x + + + > 2 4 5 2 x x x + + + - 1 Câu 7: Cho 0 a, b, c 2 và a+b+c = 3. CMR: a 2 + b 2 + c 2 5 4:38:34 a7/p7Chu Thị Khánh Vân Câu 8: Cho hình chữ nhật ABCD có chiều dài BC gấp 2 lần chiều rộng CD, từ C kẻ Cx tạo với CD một góc 15 0 cắt AD tại E. CMR: BCEV cân. đề số 8 Câu 1: Cho A = 3 2 3 2 2 1 2 2 1 n n n n n + + + + a, Rút gọn A b, Nếu n Z thì A là phân số tối giản. Câu 2: Cho x, y > 0 và x+y = 1. Tìm giá trị lớn nhất của P = (1 - 2 1 x )(1 - 2 1 y ) Câu 3: a, Cho a, b ,c là độ dài 3 cạnh của 1 tam giác. CMR: a 2 + b 2 + c 2 < 2(ab+bc+ca) b, Cho 0 a, b , c 1. CMR: a + b 2 +c 3 ab bc ca 1 Câu 4: Tìm x, y, z biết: x+yz = y+z-x = z+x-y = xyz Câu 5: Cho n Z và n 1. CMR: 1 3 + 2 3 +3 3 + +n 3 = 2 2 ( 1) 4 n n+ + Câu 6: Giải bất phơng trình: (x-1)(3x+2) > 3x(x+2) + 5 Câu 7: Chia tập N thành các nhóm: 1; (2,3); (4,5,6) , nhóm n gồm n số hạng. Tính tổng các số trong nhóm 94. Câu 8: Cho hình vuông ABCD. M, N là trung điểm AB, BC, K là giao điểm của CM và DN. CMR: AK = BC đề số 9 Câu 1: Cho M = a b c+ + b a c+ + c a b+ ; N = 2 a b c+ + 2 b a c+ + 2 c a b+ a, CMR: Nếu M = 1 thì N = 0 b, Nếu N = 0 thì có nhất thiết M = 1 không? Câu 2: Cho a, b, c > 0 và a+b+c = 2. CMR: 2 a b c+ + 2 b a c+ + 2 c a b+ 1 Câu 3: Cho x, y, z 0 và x + 5y = 1999; 2x + 3z = 9998. Tìm giá trị lớn nhất của M = x + y + z Câu 4: a, Tìm các số nguyên x để x 2 2x -14 là số chính phơng. b, Tìm các số ab sao cho ab a b là số nguyên tố Câu 5: Cho a, b, c, d là các sô nguyên dơng CMR: A = a a b c+ + + b a b d+ + + c b c d+ + + d a c d+ + không phải là số nguyên. 4:38:34 a7/p7Chu Thị Khánh Vân Câu 6:Cho ABCV cân (AB=AC) trên AB lấy điểm M, trên phần kéo dài của AC về phía C lấy điểm N sao cho: BM = CN, vẽ hình bình hành BMNP. CMR: BC PC Câu 7: Cho x, y thoả mãn: 2x 2 + 2 1 x + 2 4 y = 4 (x 0). Tìm x, y để xy đạt giá trị nhỏ nhất đề số 10 Câu 1: Cho a, b, c > 0 và P = 3 2 2 a a ab b+ + + 3 2 2 b b bc c+ + + 3 2 2 c c ac a+ + Q = 3 2 2 b a ab b+ + + 3 2 2 c b bc c+ + + 3 2 2 a c ac a+ + a, CMR: P = Q b, CMR: P 3 a b c+ + Câu 2:Cho a, b, c thoả mãn a 2 + b 2 + c 2 = 1. CMR: abc + 2(1+a+b+c+ab+bc+ca) 0 Câu 3:CMR x, y Z thì: A = (x+y)(x+2y)(x+3y)(x+4y) + y 4 là số chính phơng. Câu 4: a, Tìm số tự nhiên m, n sao cho: m 2 + n 2 = m + n + 8 b, Tìm số nguyên nghiệm đúng: 4x 2 y = (x 2 +1)(x 2 +y 2 ) Câu 5: Tìm giá trị lớn nhất, giá trị nhỏ nhất: A = 2 4 3 1 x x + + Câu 6: Cho x = 2 2 2 2 b c a ab + ; y = 2 2 2 2 ( ) ( ) a b c b c a + Tính giá trị: M = 1 x y xy + Câu 7: Giải BPT: 1 x a x < (x là ẩn số) Câu 8: Cho ABCV , trên BC lấy M, N sao cho BM = MN = NC. Gọi D, E là trung điểm của AC, AB, P là giao của AM và BD. Gọi Q là giao của AN và CE. Tính PQ theo BC Đề số 11 Câu 1: Cho x = a b a b + ; y = b c b c + ; z = c a c a + CMR: (1+x)(1+y)(1+z) = (1-x)(1-y)(1-z) Câu 2: Tìm giá trị nhỏ nhất, lớn nhất của A = 4 2 2 1 ( 1) x x + + Câu 3: 4:38:34 a7/p7Chu Thị Khánh Vân a, Cho a, b, c > 0 và a+b+c = 1. CMR: b+c 16abc b, Cho 0 < a, b, c, d < 1. CMR có ít nhất một bất đẳng thức sai trong các bất đẳng thức sau: 2a(1-b) > 1 8c(1-d) > 1 3b(1-c) > 2 32d(1-a) > 3 Câu 4: Giải BPT: mx(x+1) > mx(x+m) + m 2 1 Câu 5: a, Tìm nghiệm nguyên tố của PT: x 2 + y 2 + z 2 = xyz b, Tìm số nguyên tố p để 4p + 1 là số chính phơng. Câu 6: Tìm số có 2 chữ số mà số ấy là bội số của tích hai chữ số của nó. Câu 7: Cho hình thang ABCD (BC// AD). Gọi O là giao điểm của hai đờng chéo AC, BD; Gọi E, F là trung điểm của AD, BC. CMR: E, O, F thẳng hàng. đề số 12 Câu 1: Tìm đa thức f(x) biết: f(x) chia cho x+3 d 1 f(x) chia cho x-4 d 8 f(x) chia cho (x+3)(x-4) thơng là 3x và d Câu 2: a, Phân tích thành nhân tử: A = x 4 + 2000x 2 + 1999x + 2000 b, Cho: 2 2 2 x yz y zx z xy a b c = = . CMR: 2 2 2 a bc b ca c ab x y z = = Câu 4: CMR: 1 9 + 1 25 + + 2 1 (2 1)n + < 1 4 Với n N và n 1 Câu 5: Tìm giá trị lớn nhất, giá trị nhỏ nhất: M = 2 2 2 2 x xy y x y + + + (x0; y0) Câu 6: a, Tìm nghiệm nguyên của PT: 2x 2 + 4x = 19 3y 2 b, CMR phơng trình sau không có nghiệm nguyên: x 2 + y 2 + z 2 = 1999 Câu 7: Cho hình vuông ABCD. Trên BD lấy M, từ M kẻ các đờng vuông góc AB, AD tại E, F. a, CMR: CF = DE; CF DE b, CMR: CM = EF; CM EF c, CMR: CM, BF, DE đồng qui đề số 13 Câu 1: 4:38:34 a7/p7Chu Thị Khánh Vân a, Rút gọn: A = (1- 2 4 1 )(1- 2 4 3 ) (1- 2 4 199 ) b, Cho a, b > 0 và 9b(b-a) = 4a 2 . Tính : M = a b a b + Câu 2: a, Cho a, b, c > o. CMR: 2 a b c+ + 2 b c a+ + 2 c a b+ 2 a b c+ + b, Cho ab 1. CMR: 2 1 1a + + 2 1 1b + 2 1ab + Câu 3: Tìm x, y, z biết: x+2y+3z = 56 và 1 1x = 2 2y = 3 3z Câu 4: a, Tìm giá trị lớn nhất, giá trị nhỏ nhất của M = 2 2 1 2 x x + + b, Tìm giá trị nhỏ nhất A = 2 2 6 5 9x x Câu 5: Giải BPT: mx 2 4 > 4x + m 2 4m Câu 6: a, Tìm số nguyên dơng x thoả mãn: x(x+1) = k(k+2) (k là số nguyên dơng cho trớc). b, Tìm nghiệm nguyên của PT: 2x-5y-6z =4. Câu 7: Cho hình vuông ABCD, Về phía ngoài hình vuông trên cạnh BC vẽ BCFV đều, về phía trong hình vuông trên cạnh AB vẽ ABEV đều. CMR: D, E, F thẳng hàng. Đề số 14 Câu 1: Cho A = ( 2 2 2 3 2 1 ) : ( ) : x x y y x y xy x xy x xy x y y + + + + a, Tìm ĐKXĐ của A b, Tìm x, y để A > 1 và y < 0. Câu 2: a, Giải PT: x 4 + 2x 3 2x 2 + 2x - 3 = 0 b, Giải BPT: 3 mx < 2(x-m) (m+1) 2 Câu 3: Cho a, b, c > 0. CMR: 3 2 a b c b c a c a b + + + + + Câu 4: CM: A = n 6 n 4 +2n 3 +2n 2 không là số chính phơng với n N và n >1 Câu 5: Cho f(x) = x 2 + nx + b thoả mãn 1 ( ) ; 1 2 f x x . Xác định f(x) 4:38:34 a7/p7Chu Thị Khánh Vân Câu 6: Cho x, y > 0 thoả mãn xy= 1. Tìm giá trị lớn nhất : A = 4 2 2 4 x y x y x y + + + Câu 7: Cho hình thang ABCD (AD//BC). M, N là trung điểm của AD, BC. Từ O trên MN kẻ đởng thẳng song song với AD cắt AB, CD tại E và F. CMR: OE = OF đề số 15 Câu 1: Cho xyz = 1 và x+y+z = 1 1 1 x y z + + = 0. Tính giá trị M = 6 6 6 3 3 3 x y z x y z + + + + Câu 2: Cho a 0 ; 1 và 1 2 1 2 3 1 2 1 11 ; ; 2 1 1 x xa x x x a x x = = = + + + Tìm a nếu x 1997 = 3 Câu 3: Tìm m để phơng trình có nghiệm âm : ( 2) 3( 1) 1 1 m x m x + = + Câu 4: Với n N và n >1. CMR: 1 1 1 1 1 2 1 2 2n n n < + + + < + + Câu 5: Cho M = 3x 2 - 2x + 3y 2 2y + 6x +1 Tìm giá trị M biết: xy = 1 và x y+ đạt giá trị nhỏ nhất. Câu 6: Tìm x, y N biết: 2 x + 1 = y 2 Câu 7: Cho ABCV (AB < AC). AD, AM là đờng phân giác, đờng trung tuyến của ABCV . Đờng thẳng qua D và vuông góc với AD cắt AC tại E. So sánh S ADMV và S CEMV Đề số 16 Câu 1: Cho (a 2 + b 2 + c 2 )( x 2 + y 2 + z 2 ) = (ax + by + cz) 2 . CMR: x y z a b c = = với abc 0 Câu 2: Cho abc 0 và 2 2 4 4 x y z a b c a b c a b c = = + + + + CMR: 2 2 4 4 a b c x y z x y z x y z = = + + + + Câu 3: Cho a, b, c là 3 số dơng và nhỏ hơn 1CMR: Trong 3 số: (1-a)b; (1-b)c; và (1-c)a không đồng thời lớn hơn 1 4 Câu 4: Cho x 3 + y 3 + 3(x 2 +y 2 ) + 4xy + 4 = 0 và xy > 0. Tìm giá trị lớn nhất A = 1 1 x y + 4:38:34 a7/p7Chu Thị Khánh Vân Câu 5: a, CMR PT: 3x 5 x 3 + 6x 2 18x = 2001 không có nghiệm nguyên. b, Tìm 4 số nguyên dơng sao cho tổng của chúng bằng tích của chúng Câu 6: Cho n N và n >1 CMR: 1 + 2 2 2 1 1 1 2 2 3 n + + + < Câu 7: Cho ABCV về phía ngoài ABCV vẽ tam giác vuông cân ABE và CAF tại đỉnh A. CMR: Trung tuyến AI của ABCV vuông góc với EF và AI = 1 2 EF Câu 8: CMR: 21 4 14 3 n n + + là phân số tối giản (với n N). đề số 17 Câu 1:Phân tích ra thừa số: a, (x+1)(x+3)(x+5)(x+7) +15 b, x 3 + 6x 2 + 11x + 6 Câu 2: Cho x > 0 và x 2 + 2 1 x = 7. Tính giá trị của M = x 5 + 5 1 x Câu 3: Cho x, y thoả mãn 5x 2 + 8xy + 5y 2 = 72 Tím giá trị lớn nhất, giá trị nhỏ nhất: A = x 2 + y 2 Câu 4: a, Cho a, b, c > 0 và a+b+c 1 CMR: 2 2 2 1 1 1 9 2 2 2a bc b ac c ab + + + + + b, Cho a, b, c thoả mãn a+b+c = 2; ab+bc+ca = 1. CMR: 0 a, b, c 4 3 Câu 5: Tính tổng S = 1+2x+3x 2 +4x 3 + + nx n-1 (x1) Câu 6: Tìm nghiệm nguyên của PT: xy xz yz z y x + + = 3 Câu 7: Cho ABCV biết đờng cao AH và trung tuyến AM chia góc ã BAC thành 3 phần bằng nhau. Xác định các góc của ABCV Đề số 18 Câu 1: [...]... lập phơng của 3 số còn lại Câu 5: Tìm nghiệm nguyên dơng của PT: x2 + (x+y)2 = (x+9)2 Câu 6: Cho lục giác lồi ABCDEF, các đờng thẳng AB, EF cắt nhau tại P, EF và CD cắt nhau tại Q, CD và AB cắt nhau tại R Các đờng thẳng BC và DE; DE và FA; FA và BC cắt nhau tại S,T,U CMR: Nếu AB CD EF BC DE FA = = = = thì PR QR QP US TT TU đề số 32 Câu 1: a, CMR: 62k-1+1 chia hết cho 7 với K N ; n > 0 b, CMR: Số a... x+y-z = y+z-x = z+x-y = xyz Câu 2: Giải PT: x +1 x + 2 x + 3 x + 4 + = + 58 57 56 55 Câu 3: Tìm giá trị lớn nhất A= 1 1 1 + 3 3 + 3 (x, y, z > 0; xyz = 1) 3 x + y + 1 y + z + 1 z + x3 + 1 3 Câu 4: Tìm nghiệm nguyên của PT: x(x2+x+1) = 4y(y+1) Câu 5: Cho hình vuông ABCD cạnh là a Lấy M AC, kẻ ME AB, MF BC Tìm vị trí của M để S DEF nhỏ nhất Câu 6: 0 à ã Cho VABC có à = 500; B = 200 Trên phân giác BE... 10x10 +10 Câu 5: Với giá trị nào của A thì PT: 2 x a + 1 = x + 3 có nghiệm duy nhất Câu 6: Cho VABC đờng thẳng d//BC cắt AB, AC tại D, E a, CMR: Với mọi điểm F trên BC luôn có SVDEF không lớn hơn b, Xác định vị trí D, E để SVDEF lớn nhất Đề số 45 Câu 1: a, Cho 1 1 1 1 + + = a b c abc 1 SVABC 4 4:38:34 a7/p7Chu Thị Khánh Vân CMR: b, Cho M= 1 1 1 1 + n+ n = n (với n là số nguyên dơng lẻ; a, b, c 0) n... biết: A = 20+21+ +2100+9010 B = 2101+1020 Câu 6: CHo VABC , đờng cao AF, BK, CL cắt nhau tại H Từ A kẻ Ax AB, từ C kẻ Cy BC Gọi P là giao của Ax và Cy Lấy O, D, E là trung điểm của BP, BC, CA a, CMR: VODE đồng dạng với VHAB b, Gọi G là trọng tâm của VABC CMR: O, G, H thẳng hàng Đề số 28 Câu 1: Rút gọn: A = x2 + y2 + z 2 , với x+y+z = 0 ( x z ) 2 + ( z x) 2 + ( x y ) 2 Câu 2: a, CMR: M = n7 + n2 +... lớn nhất, giá trị nhỏ nhất của: P = a+b+c-ab-bc-ca Câu 5: Cho VABC vuông tại B, trên tia đối tia BA lấy D sao cho: AD = 3AB Đờng thẳng vuông góc với CD tại D cắt đờng thẳng vuông góc với AC tại E CMR: VBDE cân đề số 31 Câu 1: Cho a+b+c = 0 CMR: ( ab bc c a c a b + + )( + + )=9 c a b a b bc c a Câu 2: Tìm x, y, z biết: x 2 + y 2 + z 2 xy+3y+2z -4 Câu 3: Cho a, b, c là độ dài 3 cạnh của 1 tam giác CMR:... a,Tìm nghiệm Z+ của: 1 1 1 + + =2 x y z b, Tìm nghiệm Z của: x4 + x2 + 4 = y2 y Câu 5: Cho VABC , đặt trên các đoạn kéo dài của AB, AC các đoạn BD = CE Gọi M là trung điểm của BC, N là trung điểm của DE CMR: MN // đờng phân giác trong của góc à của VABC A Câu 6: Tìm các số nguyên dơng n và số nguyên tố P sao cho P= n(n + 1) 1 2 đề số 20 Câu 1: a, Cho a+b+c = 1; a2 + b2 + c2 = 1 và x y z = = ; abc ... x y c, Rút gọn: A = (x2-x+1)(x4-x2+1)(x8-x4+1)(x16-x8+1)(x32-x16+1) Câu 2: a, Tìm số nguyên dơng n để n5+1 chia hết cho n3+1 b, Tìm các số a, b, c sao cho: ax3+bx2+c chia hết cho x+2 và chia cho x2-1 thi d x+5 c, Nếu n là tổng 2 số chính phơng thì n2 cũng là tổng 2 số chính phơng Câu 3: a, Cho A = 11 1 (n chữ số 1), b = 100 05 (n-1 chữ số 0) CMR: ab + 1 là số chính phơng b, Tìm nghiệm tự nhiên của... hết cho g(x) = (x-1)2 Câu 5: Tìm nghiệm nguyên của PT: 1 1 1 + + =1 x y z Câu 6: CHo VABC , trung tuyến AM Qua D thuộc BC vẽ đờng song song với AM cắt AB, AC tại E, F a, CMR: Khi D di động trên BC thì DE + DF có giá trị không đổi b, Qua A vẽ đờng thẳng song song với BC cắt EF tại K CMR: K là trung tuyến của EF Đề số 37 Câu 1: Cho S = (n+1)(n+2) (n+n) CMR: Với mọi n N thì S chia hết cho 2n Câu 2: Cho... một trong 2 số còn lại Câu 3: Tìm các nghiệm nguyên thoả mãn 2 BPT: 16 + 5x > 3+ 11 và 7x 3 x + < +6 4 2 2 Câu 4: Cho A = ( x a)2 ( x b) 2 ( x c) 2 + + (a b)(a c) (b a)(b c) (c a )(c b) a, A thay đổi nh thế nào nếu ta hoán vị 2 trong 3 số a, b, c b, Tìm A nếu x=a c, Tìm A nếu b = a a ;c = 3 4 d, Nếu a-b = b-c > 0 Tìm x nếu phân thức thứ nhất bằng phân thức thứ 3 Tìm giá trị của phân thức thứ... dơng của PT: 2(x+y+z) + y = 3xyz Câu 5: Cho VABC , trung tuyến AD Gọi G là trọng tâm VABC , một cát tuyến quay quanh G cắt AB, AC tại M, N CMR: Câu 6: AB AC + =3 AM CM Cho VABC , một hình chữ nhật MNPQ thay đổi sao cho: M AB; N AC; P BC, Q BC Tìm tập hợp tâm O của hình chữ nhật MNPQ Đề số 50 Câu 1: a, Cho x+y=a; x2+y2=b; x3+y3= c CMR: a3-3ab+2c = 0 b, Xác định a, b, c, d để đẳng thức sau đúng với mọi . Trên BD lấy M, từ M kẻ các đờng vuông góc AB, AD tại E, F. a, CMR: CF = DE; CF DE b, CMR: CM = EF; CM EF c, CMR: CM, BF, DE đồng qui đề số 13 Câu 1: 4:38:34 a7/p7Chu Thị Khánh Vân a, Rút gọn:. = (x+9) 2 Câu 6: Cho lục giác lồi ABCDEF, các đờng thẳng AB, EF cắt nhau tại P, EF và CD cắt nhau tại Q, CD và AB cắt nhau tại R. Các đờng thẳng BC và DE; DE và FA; FA và BC cắt nhau tại S,T,U. CMR:. tổng các chữ số của nó. Câu 5: Cho ABC cân tại A, trên AB lấy D, trên AC lấy E sao cho:AD = EC = DE = CB. a, Nếu AB > 2BC. Tính góc à A của ABCV b, Nếu AB < BC. Tính góc à A của HBCV . 4:38:34

Ngày đăng: 04/07/2014, 12:01

TỪ KHÓA LIÊN QUAN

w