Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 88 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
88
Dung lượng
1,7 MB
Nội dung
UBND Tỉnh Bắc Ninh Kì thi tuyển sinh vào lớp 10 THPT Sở GD-đt năm học 1998-1999 Môn thi: Toán Đề chính thức Ngày thi: 17 - 7 - 1998. Thời gian : 150 phút (không kể thời gian giao đề) * Câu 1 (2 điểm) Cho a b= = + 1/ Hãy tính: ab và a b+ . 2/ Hãy lập một phơng trình bậc 2 có các nghiệm là x 1 = a b + và x 2 = b a + Câu 2 (2 diểm) Cho phơng trình bậc hai ẩn x, m là tham số: x 2 - 3mx + 3m - 4 = 0 (1) 1/ Chứng minh rằng với mọi giá trị của m phơng trình (1) luôn có 2 nghiệm phân biệt. 2/ Hãy tìm m để phơng trình (1) có một nghiệm x 1 = + , khi đó hãy tìm nghiệm còn lại x 2 của phơng trình đó. Câu 3 (2 điểm) Hai đội công nhân I và II đợc giao sửa một đoạn đờng. Nếu cả hai đội cùng làm chung thì sau 4 giờ là hoàn thành công việc. Nếu đội I làm một mình trong 2 giờ, sau đó đội II tiếp tục làm một mình trong 3 giờ thì họ đã hoàn thành đợc công việc. Hỏi mỗi đội làm riêng thì sẽ hoàn thành công việc sau bao lâu? Câu 4 (4 điểm) Cho hình chữ nhật ABCD có AB = 3 cm, AD = 5 cm. Trên cạnh AD ta lấy một điểm E sao cho BE = BC. Tia phân giác của góc CBE cắt cạnh CD ở F. Đờng thẳng EF cắt đờng thẳng AB ở M, còn đoạn CM cắt đoạn BD ở N. 1/ Chứng minh hai tam giác BCF và BEF bằng nhau. 2/ Chứng minh BE 2 = BA.BM, từ đó hãy tính độ dài đoạn thẳng BM. 3/ Chứng minh tứ giác MENB là tứ giác nội tiếp. 4/ Tính diện tích của tam giác ADN. (Giám thị coi thi không giải thích gì thêm). Hết Phạm văn vợng - Trờng THCS hoằng hải - hoằng hoá - thanmh hoá 1 Họ và tên thí sinh: ; Số báo danh: UBND Tỉnh Bắc Ninh Kì thi tuyển sinh vào lớp 10 THPT Sở GD-đt năm học 1998-1999 Môn thi: Toán Đề chính thức Ngày thi: 18 - 7 - 1998. Thời gian : 150 phút (không kể thời gian giao đề) * Câu 1 (2 điểm) Cho biểu thức A = 2x 2 + x y - y (với y 0) 1/ Phân tích A thành nhân tử. 2/ Tính số trị của biểu thức A khi x = + và y = 18. Câu 2 (2 điểm) Cho hệ phơng trình: mx ny x y n = + = (m, n là tham số) 1/ Giải hệ phơng trình khi m = n = 1. 2/ Tìm m, n để hệ đã cho có nghiệm x y = = + Câu 3 (2 điểm) Một ô tô dự định đi quãng đờng từ A đến B cách nhau 120 km với một vận tốc và thời gian đã định. Nhng sau khi khởi hành đợc một giờ thì xe hỏng, nên phải dừng lại 20 phút để sửa chữa. Vì vậy, để đến B cho đúng thời gian đã định, ô tô phải đi nốt quãng đờng còn lại với vận tốc nhanh hơn vận tốc đã định là 8km/giờ. Tìm thời gian ô tô dự định để đi hết quãng đờng AB. Câu 4 (4 điểm) Cho tam giác vuông ABC (góc đỉnh A bằng 90 0 ) có AC < AB, AH là đờng cao kẻ từ đỉnh A. Các tiếp tuyến tại A và B với đờng tròn tâm O ngoại tiếp tam giác ABC cắt nhau tại M. Đoạn MO cắt cạnh AB ở E, MC cắt đờng cao AH tại F. Kéo dài CA cho cắt đờng thẳng BM ở D. Đờng thẳng BF cắt đờng thẳng AM ở N. 1/ Chứng minh OM // CD và M là trung điểm của đoạn thẳng BD. 2/ Chứng minh EF // BC. 3/ Chứng minh HA là tia phân giác của góc MHN. 4/ Cho biết OM = BC = 4 cm. Tính diện tích tam giác MEF. Phạm văn vợng - Trờng THCS hoằng hải - hoằng hoá - thanmh hoá 2 (Giám thị coi thi không giải thích gì thêm). Hết Họ và tên thí sinh: ; Số báo danh: UBND Tỉnh Bắc Ninh Kì thi tuyển sinh vào lớp 10 THPT Sở GD-đt năm học 1999-2000 Môn thi: Toán Đề chính thức Ngày thi: 13 - 7 - 1999. Thời gian : 150 phút (không kể thời gian giao đề) * Câu 1 (2 điểm) Cho biểu thức: P = a b a b ab b a ab a b b a ữ ữ ữ + (với a > 0, b > 0, a b). a) Rút gọn biểu thức P. b) Tính số trị của biểu thức P khi biết a và b là hai nghiệm của phơng trình: x 2 - 8x + 4 = 0. Câu 2 (2 điểm) Cho phơng trình bậc hai ẩn x (m là tham số) x 2 - 2x + m = 0 (1) a) Tìm m để phơng trình (1) có nghiệm. b) Chứng minh rằng với mọi giá trị của m phơng trình (1) không thể có hai nghiệm cùng là số âm. c) Tìm m để phơng trình (1) có hai nghiệm x 1 , x 2 thoả mãn: x 1 - 2x 2 = 5. Câu 3 (2 điểm) Một tam giác vuông có chu vi là 24 cm. Biết rằng độ dài cạnh huyền của tam giác nhỏ hơn tổng độ dài hai cạnh góc vuông là 4 cm. Tính độ dài các cạnh của tam giác đó. Câu 4 (4 điểm) Cho hình vuông ABCD có độ dài cạnh bằng 4 cm. Tia phân giác của góc ACB cắt cạnh AB tại M. Vẽ đờng tròn đờng kính CM, đờng tròn này cắt đờng chéo AC tại điểm E (E khác C). Tia ME cắt cạnh AD tại điểm N; tia CN cắt đờng tròn đờng kính CM tại điểm I (I khác C). a) Chứng minh: CBM = CEM và CEN = CDN , từ đó suy ra CN là tia phân giác của góc ACD. b) Chứng minh hệ thức: AM 2 + AN 2 = (BM + DN) 2 . Phạm văn vợng - Trờng THCS hoằng hải - hoằng hoá - thanmh hoá 3 c) Chứng minh rằng 3 điểm B, I, D thẳng hàng. d) Tính diện tích của tam giác AMN. (Giám thị coi thi không giải thích gì thêm). Hết Họ và tên thí sinh: ; Số báo danh: UBND Tỉnh Bắc Ninh Kì thi tuyển sinh vào lớp 10 THPT Sở GD-đt năm học 2000-2001 Môn thi: Toán Đề chính thức Ngày thi: 22 - 6 - 2000. Thời gian : 150 phút (không kể thời gian giao đề) * Câu 1 (2 điểm) Cho các biểu thức: A = ( ) ( ) a a a a a a + + + + + + , (với a 0) B = ( ) b b b + , (với b 0 và b 1) a) Rút gọn A và B. b) Tính số trị của hiệu: A - B, khi a = 6 - 2 và b = 6 + 2 Câu 2 (2 điểm) Cho phơng trình bậc hai ẩn x (m, n là các tham số): x 2 - (m + n)x - (m 2 + n 2 ) = 0 (1) a) Giải phơng trình (1) khi m = n = 1. b) Chứng minh rằng với mọi giá trị của m, n phơng trình (1) luôn luôn có nghiệm. c) Tìm m và n để phơng trình (1) tơng đơng với phơng trình: x 2 - x - 5 = 0. Câu 3 (2 điểm) Trong một kỳ thi, hai trờng A và B có tổng cộng 350 học sinh dự thi. Kết quả là hai trờng đó có tổng cộng 338 học sinh trúng tuyển. Tính ra thì trờng A có 97% và trờng B có 96% số học sinh dự thi trúng tuyển. Hỏi mỗi trờng có bao nhiêu học sinh dự thi? Câu 4 (4 điểm) Cho tam giác ABC có BAC = 90 0 , ACB = 30 0 , nội tiếp trong đờng tròn tâm O bán kính R = 2cm. Trên đờng tròn (O) ta lấy một điểm D sao cho A và D nằm về hai phía so với đờng thẳng BC và DB > DC. Gọi E và F theo thứ tự là chân các đờng vuông góc hạ từ B và C tới đờng thẳng AD, còn I và K theo thứ tự là chân các đờng vuông góc hạ từ A và D tới đờng thẳng BC. Phạm văn vợng - Trờng THCS hoằng hải - hoằng hoá - thanmh hoá 4 a) Chứng minh các tứ giác ABIE, CDFK và EKFI là những tứ giác nội tiếp. b) Chứng minh EK // AC và AE = DF. c) Khi AD là đờng kính của đờng tròn (O), hãy tính chu vi đờng tròn ngoại tiếp tứ giác EKFI. (Giám thị coi thi không giải thích gì thêm). Hết Họ và tên thí sinh: ; Số báo danh: UBND Tỉnh Bắc Ninh Kì thi tuyển sinh vào lớp 10 THPT Sở GD-đt năm học 2000-2001 Môn thi: Toán Đề chính thức Ngày thi: 23 - 6 - 2000. Thời gian : 150 phút (không kể thời gian giao đề) * Câu 1 (2 điểm) Cho các biểu thức: A = x x x x x x + + , (với x 0 và x 1) B = + + a) Rút gọn A và B. b) Tính số trị của biểu thức A khi x = B c) Tìm x để A = B. Câu 2 (2 điểm) Cho các hệ phơng trình: x y x y = = (I) và mx y n x n m y + = + = (II) , (với m, n là các tham số) a) Giải hệ phơng trình (I). b) Tìm m và n để hệ phơng trình (I) tơng đơng với hệ phơng trình (II). Câu 3 (2 điểm) Hai khu đất hình chữ nhật, khu đất thứ nhất có chiều rộng bằng chiều dài; khu đất thứ hai có chiều rộng lớn hơn chiều rộng của khu đất thứ nhất là 2m, chiều dài nhỏ hơn chiều dài của khu đất thứ nhất là 4m và có diện tích bằng diện tích của khu đất thứ nhất. Tính diện tích của từng khu đất đó. Câu 4 (4 điểm) Cho hình vuông ABCD nội tiếp trong đờng tròn tâm O bán kính R = 2 cm. Tiếp tuyến với đ- ờng tròn (O) tại các điểm A và B cắt nhau tại M. Đờng thẳng MD cắt đờng tròn (O) tại điểm E (E Phạm văn vợng - Trờng THCS hoằng hải - hoằng hoá - thanmh hoá 5 D) và cắt cạnh AB tại điểm F. Gọi I và K theo thứ tự là trung điểm các đoạn thẳng AB và DE. Tia OK cắt đờng thẳng AB tại điểm P; tia AK cắt đờng tròn (O) tại điểm N (N A). a) Chứng minh 5 điểm A, M, B, O và K cùng nằm trên một đờng tròn và tính bán kính của đờng tròn đó. b) Chứng minh tam giác PKF đồng dạng với tam giác PIO và chứng minh rằng: PA.PB = PF.PI. c) Tính diện tích của tam giác MND. (Giám thị coi thi không giải thích gì thêm). Hết Họ và tên thí sinh: ; Số báo danh: UBND Tỉnh Bắc Ninh Kì thi tuyển sinh vào lớp 10 THPT Sở GD-đt năm học 2001-2002 Môn thi: Toán Đề chính thức Ngày thi: 13 - 7 - 2001. Thời gian : 150 phút (không kể thời gian giao đề) * Câu 1 (1,5 điểm) Cho M = x x x x x x x + + + + a) Rút gọn M. b) Tìm x để M đạt giá trị nhỏ nhất. Câu 2 (1,5 điểm) Cho phơng trình: x 2 - 2(m + 1)x + 2m + 5 = 0 a) Giải phơng trình khi m = . b) Tìm tất cả giá trị của m để phơng trình đã cho có nghiệm. Câu 3 (2,5 điểm) a) Giải hệ phơng trình: x y xy x y xy + + = + + = b) Hai ngời đi xe đạp xuất phát cùng một lúc đi từ A đến B. Vận tốc của họ hơn kém nhau 3 km/h nên đến B sớm muộn hơn nhau 30 phút. Tính vận tốc của mỗi ngời biết quãng đờng AB dài 30 km. Câu 4 (3 điểm) Cho tam giác cân ABC (AB = AC) nội tiếp một đờng tròn tâm O, một điểm D trên cung nhỏ AB. Trên các tia đối của các tia BD, CD lần lợt lấy các điểm M, N sao cho CN = BM. Gọi giao điểm thứ hai của các đờng thẳng AM; AN với đờng tròn tâm O theo thứ tự là P, Q. Phạm văn vợng - Trờng THCS hoằng hải - hoằng hoá - thanmh hoá 6 a) Tam giác AMN là tam giác gì? Tại sao? b) Chứng minh tứ giác ADMN nội tiếp đợc. Suy ra ba đờng thẳng MN, PC, BQ song song với nhau. Câu 5 (1,5) điểm) Tìm tất cả các số nguyên a để phơng trình: x 2 - (3 + 2a)x + 40 - a = 0 có nghiệm nguyên. (Giám thị coi thi không giải thích gì thêm). Hết Họ và tên thí sinh: ; Số báo danh: UBND Tỉnh Bắc Ninh Kì thi tuyển sinh vào lớp 10 THPT Sở GD-đt năm học 2001-2002 Môn thi: Toán Đề chính thức Ngày thi: 14 - 7 - 2001. Thời gian : 150 phút (không kể thời gian giao đề) * Câu 1 (1,5 điểm) a) Chứng minh hằng đẳng thức: A = a a a a a a a a + + = + + với a > 0 và a 1 b) Tìm a để A < 0. Câu 2 (1,5 điểm) Cho phơng trình bậc hai: x 2 - 2(m + 1)x + m 2 + 3m + 2 = 0. a) Tìm các giá trị của m để phơng trình luôn có hai nghiệm phân biệt. b) Tìm giá trị của m thoả mãn: x x+ = (Trong đó x 1 , x 2 là hai nghiệm của phơng trình ). Câu 3 (2,5 điểm) a) Giải hệ phơng trình: x y x y x y x y + = + + = + b) Một hình chữ nhật có cạnh này bằng cạnh kia. Nếu bớt đi mỗi cạnh 5m thì diện tích hình chữ nhật đó phải giảm đi 16%. Tính các kích thớc của hình chữ nhật đó lúc đầu. Câu 4 (3 điểm) Cho tam giác ABC có = 45 0 ; Các góc đều nhọn. Vẽ đờng tròn tâm O đờng kính BC, đờng tròn này cắt AB và AC lần lợt tại D và E. a) Chứng minh: Góc = , suy ra AE = EB. Phạm văn vợng - Trờng THCS hoằng hải - hoằng hoá - thanmh hoá 7 b) Gọi H là giao điểm của BE và CD. Chứng minh rằng đờng trung trực của đoạn DH đi qua trung điểm của đoạn AH. c) Chứng minh rằng OE là tiếp tuyến của đờng tròn ngoại tiếp tam giác ADE. Câu 5 (1,5 điểm) Tìm tất cả các số tự nhiên a để phơng trình: x 2 - a 2 x + a + 1 = 0 có nghiệm nguyên. (Giám thị coi thi không giải thích gì thêm). Hết Họ và tên thí sinh: ; Số báo danh: UBND Tỉnh Bắc Ninh Kì thi tuyển sinh vào lớp 10 THPT Sở GD-đt năm học 2002-2003 Môn thi: Toán Đề chính thức Ngày thi: 23 - 7 - 2002. Thời gian : 150 phút (không kể thời gian giao đề) * Câu 1 (2,5 điểm) 1) Hệ thức a a b b = chỉ đúng với điều kiện nào của a và b. Vận dụng: Tính 2) Phân tích thành nhân tử: x - 5 x + 6 với x 0. 3) Rút gọn biểu thức: P = x x x x x x x + + Câu 2 (2 điểm) Cho hai phơng trình: x 2 - 3x + 2m + 6 = 0 (1) và x 2 + x - 2m - 10 = 0 (2) 1) Giải hai phơng trình trên với m = -3. 2) Tìm các giá trị của m để hai phơng trình có nghiệm chung. 3) Chứng minh rằng với mọi giá trị của m, ít nhất một trong hai phơng trình trên có nghiệm. Câu 3 (1,5 điểm) Một miếng bìa hình chữ nhật có chu vi 20 cm. Nếu giảm chiều rộng 2 cm và tăng chiều dài 3 cm thì diện tích giảm 6 cm 2 . Tìm kích thớc của miếng bìa đã cho. Câu 4 (3 điểm) Phạm văn vợng - Trờng THCS hoằng hải - hoằng hoá - thanmh hoá 8 Cho đờng tròn (O) bán kính 2 cm và đờng tròn (O) bán kính 8 cm tiếp xúc ngoài nhau tại A. Một tiếp tuyến chung ngoài của hai đờng tròn cắt OO tại E và tiếp xúc với đờng tròn (O) tại B, tiếp xúc với đờng tròn (O) tại C. 1) Tứ giác OBCO là hình gì? Tại sao? Tính diện tích tứ giác OBCO. 2) Xác định hình dạng tam giác ABC. 3) Tính độ dài EB. Câu 5 (1 điểm) Tìm ba số nguyên dơng sao cho tổng của chúng bằng tích của chúng. (Giám thị coi thi không giải thích gì thêm). Hết Họ và tên thí sinh: ; Số báo danh: UBND Tỉnh Bắc Ninh Kì thi tuyển sinh vào lớp 10 THPT Sở GD-đt năm học 2002-2003 Môn thi: Toán Đề chính thức Ngày thi: 24 - 7 - 2002. Thời gian : 150 phút (không kể thời gian giao đề) * Câu 1 (2,5 điểm) 1) Hệ thức a b a b= chỉ đúng với điều kiện nào của a và b. Vận dụng: So sánh và 2) Phân tích thành nhân tử: x - x + 2 với x 0. 3) Rút gọn biểu thức: Q = x x x x x x x x + + + ữ ữ + + Câu 2 (2 điểm) Cho hệ phơng trình: x m x y m + = + + = 1) Giải hệ với m = 6. 2) Tìm các giá trị của m để hệ có nghiệm (x;y) thoả mãn x = 3y. 3) Tìm các giá trị của m để hệ có nghiệm (x;y) thoả mãn x.y > 0. Câu 3 (1,5 điểm) Phạm văn vợng - Trờng THCS hoằng hải - hoằng hoá - thanmh hoá 9 Tìm các cạnh góc vuông của một tam giác vuông biết độ dài cạnh huyền là 5 cm và độ dài hai cạnh góc vuông hơn kém nhau 1 cm. Câu 4 (3 điểm) Cho đờng tròn (O) và dây AB không đi qua O. Một điểm C nằm trên tia AB kéo dài. Gọi P là điểm chính giữa của cung lớn AB và kẻ đờng kính PQ của đờng tròn (O). Gọi D là giao điểm của PQ và AB; I là giao điểm thứ hai của CP và đờng tròn (O); K là giao điểm của IQ và AB. 1) Chứng minh tứ giác IKDP nội tiếp. 2) Chúng minh CI.CP = CK.CD. 3) Cho A, B, C cố định và đờng tròn (O) thay đổi qua A, B. Chứng minh rằng đờng thẳng IQ luôn đi qua một điểm cố định. Câu 5 (1 điểm) Tìm các số nguyên x, y thoả mãn: x 2 + xy + y 2 = x 2 .y 2 (Giám thị coi thi không giải thích gì thêm). Hết Họ và tên thí sinh: ; Số báo danh: UBND Tỉnh Bắc Ninh Kì thi tuyển sinh vào lớp 10 THPT Sở GD-đt năm học 2003 - 2004 Môn thi: Toán Đề chính thức Ngày thi: 15 - 7 - 2003. Thời gian : 150 phút (không kể thời gian giao đề) * Câu 1 (3 điểm) 1) Thực hiện phép tính: a) + + b) + + 2) Cho biểu thức: A = x x x x x x x + + + + a) Tìm các giá trị của x để A có nghĩa. Rút gọn A. b) Tìm các giá trị của x để A = 5. c) Tìm các giá trị chính phơng của x để A nhận giá trị nguyên. Câu 2 (1.5 điểm) Cho hệ phơng trình: mx y x my + = + = Phạm văn vợng - Trờng THCS hoằng hải - hoằng hoá - thanmh hoá 10 [...]... trình A (-1 ; 2); 3 x 5 y = 1 B (1; -2 ); có nghiệm là: C (-1 ; -2 ); D (-2 ; -1 ) Phạm văn vợng - Trờng THCS hoằng hải - hoằng hoá - thanmh hoá 17 2) Biểu thức (1 3) 2 có giá trị là: A 1 3 ; B 3 1 ; C 1 + 3 ; D -2 3) Các hàm số y = (5m -2 )x và y = (3 2m)x 2 có đồ thị là hai đờng thẳng song song khi: A m = 5 ; 7 B m = 7 ; 5 C m = 4) Bài toán nh hình vẽ có AB là đờng kính , BK là tiếp tuyến của... phơng trình: 1) (x2 - 2x) (x2 - 2x + 2) = 15 2) 2x4 - x3 - 5x2 + x + 2 = 0 (Giám thị coi thi không giải thích gì thêm) Hết Họ và tên thí sinh: ; Số báo danh: UBND Tỉnh Bắc Ninh Kì thi tuyển sinh vào lớp 10 THPT năm học 200 5-2 006 Sở GD-đt Môn thi: Toán Ngày thi: 13 - 7 - 2005 Thời gian : 150 phút (không kể thời gian giao đề) -* - Đề chính thức Câu... Tỉnh Bắc Ninh Kì thi tuyển sinh vào lớp 10 THPT Sở GD-đt năm học 200 5-2 006 Đề chính thức Môn thi: Toán Ngày thi: 14 - 7 - 2005 Thời gian : 150 phút (không kể thời gian giao đề) -* - Câu 1 (2 điểm) Cho biểu thức N = x 2 + y 2 + 2 xy x y + x2 y 2 x+ y 1) Rút gọn N 2) Với điều kiện nào của x, y thì N < 0 Phạm văn vợng - Trờng THCS hoằng hải - hoằng hoá - thanmh hoá 15 Câu 2... Hết Họ và tên thí sinh: ; Số báo danh: UBND Tỉnh Bắc Ninh Kì thi tuyển sinh vào lớp 10 THPT năm học 200 4-2 005 Sở GD-đt Môn thi: Toán Ngày thi: 8 - 7 - 2004 Thời gian : 150 phút (không kể thời gian giao đề) -* - Đề chính thức Câu 1 (2 diểm) Cho phơng trình: x2 - ( m + 1)x + m2 - 2m + 2 = 0 1 Giải phơng trình với m = 2 2 Tìm m để phơng trình có nghiệm kép; vô... mãn : Sở gd-đt thái bình 4x y 2 y + 2 = 4x 2 + y đề thi tuyển sinh LớP 10 thpt ******* Ngày thi : Bài 1: (2,0 điểm) X- Năm học 200 5-2 006 Thời gian : 150 phút 1 Thực hiện phép tính: 5 + 9 4 5 2 Giải phơng trình: x4+5x 2-3 6 = 0 Bài 2 (2,5 điểm) Cho hàm số: y = (2m-3)x +n-4 (d) 3 2 (m ) 1 Tìm các giá trị của m và n để đờng thẳng (d) : a) Đi qua A(1;2) ; B(3;4) b) Cắt trục tung tại điểm có tung độ y... Bắc Ninh Sở GD-đt Đề chính thức Kì thi tuyển sinh vào lớp 10 THPT năm học 200 6-2 007 Môn thi: Toán Thời gian : 120 phút (không kể thời gian giao đề) Ngày thi: 13 - 7 - 2006 Câu 1 (2 điểm) Trong mỗi câu dới đây, mỗi câu chỉ có một kết quả đúng Em hãy chọn kết quả đúng đó và ghi vào bài thi 1) Phơng trình 3x2 + 5x - 8 = 0 có 1 nghiệm là: A 1; B -1 ; C 3 ; 8 D 3 8 2) Đồ thị các hàm số y = -2 x + 5 và y... Kì thi tuyển sinh vào lớp 10 THPT Sở GD-đt năm học 2003 - 2004 Môn thi: Toán Ngày thi: 16 - 7 - 2003 Thời gian : 150 phút (không kể thời gian giao đề) -* - Đề chính thức Câu 1 (2 điểm) 1) Chứng minh rằng: x1 + x2 = Nếu phơng trình bậc hai: ax2 + bx + c = 0 có hai nghiệm là x 1 và x2 thì b c và x1.x2 = a a 2) Tìm hai số biết tổng của chúng bằng 4 và tích của chúng bằng -5 3)... 6 - 3 3 + 4 + 3 + 2 3 = 10 b) Vi x > 0, y > 0 v x y thỡ : Phạm văn vợng - Trờng THCS hoằng hải - hoằng hoá - thanmh hoá 19 x yy x xy + xy = x y xy( x y ) xy + ( x y )( x + y ) x y = = x y+ x+ y=2 x 2 KX : x -2 T phng trỡnh ó cho suy ra : x(x + 2) + 4 = 3(x + 2) x2 x 2 = 0 Vỡ a b + c = 1 (-1 ) + 2 = 0 nờn phng trỡnh trờn cú hai nghim l : x1 = -1 ; x2 = 2 C hai nghim ny ờu tho món KX Võy S = {-1 ... b) M là tâm đờng tròn ngoại tiếp HEF Sở gd-đt thái bình đề thi tuyển sinh LớP 10 thpt III- ******* Năm học 199 9-2 000 Thời gian : 150 phút Ngày thi : (Đề thi bị lộ phải thi lại) Bài 1(2 điểm): Với giá trị nào của x thì các biểu thức sau có nghĩa: 1) 1 ; 2x Bài 2(1 điểm): 2) 5 x 1 ; 2x x2 3) x +1 ; x 4) 1 ; 1 x Phạm văn vợng - Trờng THCS hoằng hải - hoằng hoá - thanmh hoá 24 3 x +1 + =2 x +1 3 Giải phơng... vị trí điểm C sao cho diện tích ABKI max Bài 5(1 điểm): Cho P(x) = 3x3+ax2+b Tìm giá trị của a và b để P(2000) = P (-2 000) = 0 Phạm văn vợng - Trờng THCS hoằng hải - hoằng hoá - thanmh hoá 26 Sở gd-đt thái bình đề thi tuyển sinh LớP 10 thpt ******* VI- Ngày thi Bài 1(2 điểm):: Năm học 200 1-2 002 Thời gian : 150 phút x2 1 Cho biểu thức K = ữ 2 x 1 x +1 x x +1 a) Tìm điều kiện của x để biểu thức K . x y x y + = = có nghiệm là: A. (-1 ; 2); B. (1; -2 ); C. (-1 ; -2 ); D. (-2 ; -1 ). Phạm văn vợng - Trờng THCS hoằng hải - hoằng hoá - thanmh hoá 17 100 0 30 0 Đề chính thức 2) Biểu. trình 3x 2 + 5x - 8 = 0 có 1 nghiệm là: A. 1; B. -1 ; C. ; D. 2) Đồ thị các hàm số y = -2 x + 5 và y = 3x 2 có một giao điểm có toạ độ là: A. (-1 ; 3); B. (1; -3 ); C. (-1 ; -3 ); D. (1; 3). Phạm. Phạm văn vợng - Trờng THCS hoằng hải - hoằng hoá - thanmh hoá 1 Họ và tên thí sinh: ; Số báo danh: UBND Tỉnh Bắc Ninh Kì thi tuyển sinh vào lớp 10 THPT Sở GD-đt năm học 199 8-1 999 Môn thi: