1. Trang chủ
  2. » Khoa Học Tự Nhiên

Biến đổi đồng nhất pdf

7 929 11

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 7
Dung lượng 168 KB

Nội dung

Chuyên đề 1: BIẾN ĐỔI ĐỒNG NHẤT Các ví dụ và phương pháp giải Ví dụ 1: Phân tích đa thức thành nhân tử a. ( ) ( ) 11 22 +−+ axxa b. nn xxx −+− + 3 1 . Giải: a. Dùng phương pháp đặt nhân tử chung ( ) ( ) 11 22 +−+ axxa = xxaaax −−+ 22 ( ) ( ) ( )( ) 1 −−=−−−= axaxaxaxax b. Dùng phương pháp đặt nhân tử chung rồi sử dụng hằng đẳng thức nn xxx −+− + 3 1 . ( ) ( ) 11 3 −+−= xxx n ( ) ( ) ( ) ( ) ( ) [ ] ( ) ( ) 11 111111 12 22 +++−= +++−=−+++−= ++ nnn nn xxxx xxxxxxxxx Ví dụ 2: Phân tích đa thức thành nhân tử : a. x 8 + 3x 4 + 4. b. x 6 - x 4 - 2x 3 + 2x 2 . Giải: a.Dùng phương pháp tách hạng tử rồi sử dụng hằng đẳng thức x 8 + 3x 4 + 4 = (x 8 + 4x 4 + 4)- x 4 = (x 4 + 2) 2 - (x 2 ) 2 = (x 4 - x 2 + 2)(x 4 + x 2 + 2) b.Dùng phương pháp đặt nhân tử chung ,tách hạng tử ,nhóm thích hợp để sử dụng hằng đẳng thức x 6 - x 4 - 2x 3 + 2x 2 = x 2 (x 4 - x 2 - 2x +2) ( ) ( ) [ ] ( ) ( ) [ ] ( ) ( ) [ ] ( ) [ ] 221 11111 1212 2 2 2 22 2 2 2 22 2242 ++−= ++−=−+−= +−++−= xxxx xxxxxx xxxxx Ví dụ 3: Phân tích đa thức thành nhân tử : a. abcbccbaccaabba 42442 222222 −+−+−+ b. 200720062007 24 +++ xxx Giải: a.Dùng phương pháp tách hạng tử rồi nhóm thích hợp: abcbccbaccaabba 42442 222222 −+−+−+ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) [ ] ( )( )( ) cacbba cbccbababccacabba babcbacbaacbaab abcbccbacabccaabba abcbccbaccaa bba −−+= −−−+=−+−+= +−+++−+= =−+−+−−+= −+−+−+ 22 222222 222222 224242 42442 2 2 222222 222222 b.Dùng phương pháp đặt nhân tử chung rồi sử dụng hằng đẳng thức 20072062007 24 +++ xxx ( ) ( ) ( ) ( ) ( )( ) 20071 1200711 200720072007 22 22 24 +−++= +++++−= +++−= xxxx xxxxxx xxxx Ví dụ 4: Phân tích đa thức thành nhân tử : a. abccba 3 333 −++ b. ( ) 333 3 cbacba −−−++ . Giải: Sử dụng các hằng đẳng thức ( ) ( ) abbababa −++=+ 2233 ( ) ( ) [ ] abbaba 3 2 −++= ( ) ( ) baabba +−+= 3 3 .Do đó: =−++ abccba 3 333 ( ) [ ] ( ) abcbaabcba 33 3 3 −+−++= ( ) ( ) ( ) [ ] ( ) ( ) ( ) cabcabcbacba cbaabccbabacba −−−++++= ++−++−+++= 222 2 2 3 b. ( ) ( ) [ ] ( ) 3 3 3 333 3 cbacbacbacba +−−++=−−−++ ( ) ( ) ( ) [ ] ( ) ( ) ( ) ( ) ( )( )( ) bacacbcabcabacb cbcbcbacbaacbacb +++=++++= +−+−+++++++= 33333 2 222 2 Ví dụ 5: Cho a + b + c = 0. Chứng minh rằng :a 3 + b 3 + c 3 = 3abc. Giải: Vì a + b + c = 0 ( ) ( ) abccbaabccba cbaabbacba 303 3 333333 3333 3 =++⇒=−++⇒ −=+++⇒−=+⇒ Ví dụ 6: Cho 4a 2 + b 2 = 5ab, và 2a > b > 0. Tính 22 4 ba ab P − = Giải: Biến đổi 4a 2 + b 2 = 5ab ⇔ 4a 2 + b 2 - 5ab = 0 ⇔ ( 4a - b)(a - b) = 0 ⇔ a = b. Do đó 3 1 34 2 2 22 == − = a a ba ab P Ví dụ 7:Cho a,b,c và x,y,z khác nhau và khác 0. Chứng minh rằng nếu: 1;0 =++=++ c z b y a x z c y b x a thì 1; 2 2 2 2 2 2 =++ c z b y a x Giải: 000 =++⇒= ++ ⇒=++ cxybxzayz xyz cxybxzayz z c y b x a 1 1.2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 =++⇒ = ++ +++=       ++⇒=++ c z b y a x abc cxybxzayz c z b y a x c z b y a x c z b y a x Bài tập vận dụng - Tự luyện 1. Phân tích đa thức thành nhân tử : a. 12 2 −− xx b. 158 2 ++ xx c. 166 2 −− xx d. 3 23 ++− xxx 2. Phân tích đa thức thành nhân tử : ( ) ( ) 152 2 2 2 −−−− xxxx . 3. Phân tích đa thức thành nhân tử 1.(a - x)y 3 - (a - y)x 3 + (x - y)a 3 . 2.bc(b + c) + ca(c + a) + ba(a + b) + 2abc. 3.x 2 y + xy 2 + x 2 z + xz 2 + y 2 z + yz 2 + 2xyz. 4. Tìm x,y thỏa mãn: x 2 + 4y 2 + z 2 = 2x + 12y - 4z - 14. 5. Cho a +| b + c + d = 0. Chứng minh rằng a 3 + b 3 + c 3 + d 3 = 3(c + d)( ab + cd). 6. Chứng minh rằng nếu x + y + z = 0 thì : 2(x 5 + y 5 + z 5 ) = 5xyz(x 2 + y 2 + z 2 ). 7. Chứng minh rằng với x,y nguyên thì : A = y 4 + (x + y) (x + 2y) (x + 3y) (x + 4y) là số chính phương. 8. Biết a - b = 7. Tính giá trị của biểu thức sau: ( ) ( ) ( ) 1311 22 +−−+−−+ baababbbaa 9. Cho x,y,z là 3 số thỏa mãn đồng thời:      =++ =++ =++ 1 1 1 333 222 zyx zyx zyx . Hãy tính giá trị biếu thức P = ( ) ( ) ( ) 1997917 111 −+−+− zyx . 10. a.Tính 2222222 10110099 4321 +−++−+− . b.Cho a + b + c = 9 và a 2 + b 2 + c 2 = 53. Tính ab + bc + ca. 11.Cho 3 số x,y,z thỏa mãn điều kiện x + y + z = 0 và xy + yz + zx = 0. Hãy tính giá trị của Biếu thức : S = (x-1) 2005 + (y - 1) 2006 + (z+1) 2007 12.Cho 3 số a,b,c thỏa điều kiện : cbacba ++ =++ 1111 . Tính Q = (a 25 + b 25 )(b 3 + c 3 )(c 2008 - a 2008 ). ==========o0o========== HƯỚNG DẪN: 1. Phân tích đa thức thành nhân tử : a. ( )( ) 3412 2 +−=−− xxxx b. ( )( ) 53158 2 ++=++ xxxx c. ( )( ) 82166 2 −+=−− xxxx d. ( ) ( ) 3213 223 +−+=++− xxxxxx 2. Phân tích đa thức thành nhân tử : ( ) ( ) ( )( ) 35152 222 2 2 +−−−=−−−− xxxxxxxx . 3. Phân tích đa thức thành nhân tử 1.(a - x)y 3 - (a - y)x 3 + (x-y)a 3 ( )( )( )( ) ayxayaxyx ++−−−= 2.bc(b + c) + ca(c + a) + ba(a + b) + 2abc ( )( )( ) accbba +++= 3.x 2 y + xy 2 + x 2 z + xz 2 + y 2 z + yz 2 + 2xyz ( )( )( ) xzzyyx +++ 4. x 2 + 4y 2 + z 2 = 2x + 12y - 4z - 14 ( ) ( ) ( ) 222 2|321 −+−+−⇔ zyx 5. Từ a + b + c + d = 0 ( ) ( ) 33 dcba +−=+⇒ Biến đổi tiếp ta được :a 3 + b 3 + c 3 + d 3 = 3(c + d)( ab + cd). 6. Nếu x + y + z = 0 thì : ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 222 222555 222555 222222333 333 2 *;622 3 3 3 zyxxyzzxyzxyxyz zyxxyzzxyzxyxyzzyx zyxxyzzxyzxyxyzzyx zyxxyzzyxzyx xyzzyx ++=++− ++=++−++⇔ ++=++−++⇔ ++=++++ ⇒=++ Như ng: ( ) ( ) 222 2 20 zyxzxyzxyxyzzyx ++=++−⇒=++ (**) Thay (**) vào (*) ta được: 2(x 5 + y 5 + z 5 ) = 5xyz(x 2 + y 2 + z 2 ). 7. Với x,y nguyên thì : A = y 4 + (x + y) (x + 2y) (x + 3y) (x + 4y) ( ) 2 22 55 yxyx ++= 8. Biến đổi ( ) ( ) ( ) ( ) ( ) 11311 2 22 +−−=+−−+−−+ bababaababbbaa 9. Từ    =++ =++ 1 1 333 zyx zyx ( ) ( )( )( ) xzzyyxzyxzyx +++=−−−++⇒ 3 333 3      =+ =+ =+ 0 0 0 xz zy yx 2 −=⇒ P 10. a. Sử dụng hằng đẳng thức a 2 - b 2 ; S -=5151 b. Sử dụng hằng đẳng thức (a + b + c) 2 ; P = 14 11. Từ giả thiết suy ra: x 2 + y 2 + z 2 = 0 suy ra : x = y = z = 0;S = 0 12. Từ: cbacba ++ =++ 1111 . : (a + b)(b + c)(c + a) = 0 Tính được Q = 0 ==========o0o========== . Chuyên đề 1: BIẾN ĐỔI ĐỒNG NHẤT Các ví dụ và phương pháp giải Ví dụ 1: Phân tích đa thức thành nhân tử a. ( ) ( ) 11 22 +−+ axxa b ) abccbaabccba cbaabbacba 303 3 333333 3333 3 =++⇒=−++⇒ −=+++⇒−=+⇒ Ví dụ 6: Cho 4a 2 + b 2 = 5ab, và 2a > b > 0. Tính 22 4 ba ab P − = Giải: Biến đổi 4a 2 + b 2 = 5ab ⇔ 4a 2 + b 2 - 5ab = 0 ⇔ ( 4a - b)(a - b) = 0 ⇔ a = b. Do đó 3 1 34 2 2 22 == − = a a ba ab P Ví. 12y - 4z - 14 ( ) ( ) ( ) 222 2|321 −+−+−⇔ zyx 5. Từ a + b + c + d = 0 ( ) ( ) 33 dcba +−=+⇒ Biến đổi tiếp ta được :a 3 + b 3 + c 3 + d 3 = 3(c + d)( ab + cd). 6. Nếu x + y + z = 0 thì : (

Ngày đăng: 03/07/2014, 00:20

TỪ KHÓA LIÊN QUAN

w