1. Trang chủ
  2. » Giáo Dục - Đào Tạo

PHƯƠNG PHÁP ĐỔI BIẾN SỐ docx

31 710 1

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 31
Dung lượng 1,38 MB

Nội dung

1vansitran@gmail.com-01689583116 PHƯƠNG PHÁP ĐỔI BIẾN SỐ Dấu hiệu Cách chọn 2 2 a x− Đặt x = |a| sint; với ; 2 2 t π π   ∈ −     hoặc x = |a| cost; với [ ] 0;t π ∈ 2 2 x a− Đặt x = a sint ; với { } ; \ 0 2 2 t π π   ∈ −     hoặc x = a cost ; với [ ] 0; \ 2 t π π   ∈     2 2 a x+ Đặt x = |a|tant; với ; 2 2 t π π   ∈ −  ÷   hoặc x = |a|cost; với ( ) 0;t π ∈ a x a x + − hoặc a x a x − + Đặt x = acos2t ( ) ( ) x a b x− − Đặt x = a + (b – a)sin 2 t 2 2 1 a x+ Đặt x = atant; với ; 2 2 t π π   ∈ −  ÷   Bài 1: Tính 1 2 2 2 2 1 x I dx x − = ∫ Giải: Đặt x = cost, ; 2 2 t π π   ∈ −     . ⇒ dx = - sint dt Đổi cận: x 2 2 4 π t 1 0 Khi đó: 1 2 2 2 2 1 x I dx x − = ∫ = 0 2 2 4 1 os .c t sint dt cos t π − − ∫ = 4 2 0 sin .sint t dt cos t π ∫ = 2 4 2 0 sin t dt cos t π ∫ = 4 2 0 1 1 dt cos t π   −  ÷   ∫ = = ( ) tan 4 0 t t π − = 1 4 π − . (vì 0; 4 t π   ∈     nên sint 0 sin sint t≥ ⇒ = ) Bài 2: Tính 2 2 2 0 a I x a x dx= − ∫ Giải: Đặt x = asint, ; 2 2 t π π   ∈ −     . ⇒ dx = acostdt 2vansitran@gmail.com-01689583116 Đổi cận: x 0 a t 0 2 π Khi đó: 2 2 2 0 a I x a x dx= − ∫ = ( ) 2 2 2 2 2 0 sin 1 sin .a t a t acostdt π − ∫ = 2 4 2 2 0 sina tcos tdt π ∫ = 4 2 2 0 sin 2 4 a tdt π ∫ = = ( ) 4 2 0 1 4 8 a cos t dt π − ∫ = 4 1 sin 4 2 8 4 0 a t t π   −  ÷   = 4 16 a π Bài 3: Tính 1 2 2 0 1I x x dx= − ∫ Giải: Đặt x = sint, ; 2 2 t π π   ∈ −     . ⇒ dx = costdt Đổi cận: x 0 1 t 0 2 π Khi đó: 1 2 2 0 1I x x dx= − ∫ = 2 2 2 0 sin 1 sin .t t costdt π − ∫ = 2 2 2 0 1 sin 4 tcos tdt π ∫ = 2 2 0 1 sin 2 4 tdt π ∫ = = ( ) 2 0 1 1 4 8 cos t dt π − ∫ = 1 1 sin 4 2 8 4 0 t t π   −  ÷   = 16 π Bài 4: Tính 1 3 2 0 1I x x dx= − ∫ Giải: Đặt t = 2 1 x− ⇔ t 2 = 1 – x 2 ⇒ xdx = -tdt Đổi cận: x 0 1 t 1 0 Khi đó: 1 3 2 0 1I x x dx= − ∫ = 1 2 2 0 1I x x xdx= − ∫ = ( ) 1 2 0 1 . .t t tdt− ∫ = ( ) 1 2 4 0 t t dt− ∫ = 3 5 1 0 3 5 t t   −  ÷   = 2 . 15 Bài 5: Tính 2 5 ln e e dx I x x = ∫ Giải: Đặt t = lnx ⇒ dt = dx x Đổi cận: x e e 2 t 1 2 Khi đó: 2 5 ln e e dx I x x = ∫ = 2 5 1 dt t ∫ = 4 2 1 15 . 1 4 64t   − =  ÷   3vansitran@gmail.com-01689583116 Bài 6: Tính ( ) 1 4 3 4 0 1I x x dx= + ∫ Giải: Đặt t = x 4 + 1 ⇒ dt = 4x 3 dx 3 4 dt x dx⇒ = Đổi cận: x 0 1 t 1 2 Khi đó: ( ) 1 4 3 4 0 1I x x dx= + ∫ = 2 4 5 1 2 1 1 31 . 1 4 20 20 t dt t   = =  ÷   ∫ Bài 7: Tính 2 5 0 sinI xcoxdx π = ∫ Giải: Đặt t = sinx ; dt cosxdx⇒ = Đổi cận: x 0 2 π t 0 1 Khi đó: 1 2 5 5 0 0 1 sin 6 I xcoxdx t dt π = = = ∫ ∫ . Bài 8: Tính 12 4 0 tanI xdx π = ∫ Giải: Ta có: 12 12 0 0 sin 4 tan 4 4 x xdx dx cos x π π = ∫ ∫ Đặt t = cos4x ; 4s 4 sin 4 4 dt dt in xdx xdx⇒ = − ⇒ = − Đổi cận: x 0 12 π t 1 1 2 Khi đó: 1 1 12 12 2 1 0 0 1 2 1 sin 4 1 1 1 1 tan 4 ln ln 2. 1 4 4 4 4 4 2 x dt dt I xdx dx t cos x t t π π = = = − = = = ∫ ∫ ∫ ∫ Bài 9: Tính 2 5 0 I cos xdx π = ∫ Giải: Ta có: ( ) 2 2 2 2 5 4 2 0 0 0 1 sincos xdx cos xcoxdx x coxdx π π π = = − ∫ ∫ ∫ 4vansitran@gmail.com-01689583116 Đặt t = sinx ; dt cosxdx⇒ = Đổi cận: x 0 2 π t 0 1 Khi đó: ( ) ( ) ( ) 3 5 2 2 2 2 2 2 5 2 2 2 4 0 0 0 0 1 2 5 1 sin 1 1 2 . 0 3 5 18 t t I cos xdx x coxdx t dt t t dt t π π π π   = = − = − = − + = − + =  ÷   ∫ ∫ ∫ ∫ Bài 10: Tính 4 4 0 1 I dx cos x π = ∫ Giải: Đặt t = tanx ; 2 1 dt dx cos x ⇒ = Đổi cận: x 0 4 π t 0 1 Khi đó: ( ) ( ) 1 3 4 4 2 2 4 2 0 0 0 1 1 1 4 1 tan 1 . 0 3 3 t I dx x dx t dt t cos x cos x π π   = = + = + = + =  ÷   ∫ ∫ ∫ Bài 11: Tính 3 2 2 6 s cos x I dx in x π π = ∫ Giải: Đặt t = sinx ; dt cosxdx ⇒ = Đổi cận: x 6 π 2 π t 1 2 1 Khi đó: 1 1 3 2 2 2 2 2 2 2 2 1 1 6 6 2 2 1 (1 s ) 1 1 1 1 1 . 1 s s 2 2 cos x in x t I dx cosxdx dt dt t in x in x t t t π π π π − −     = = = = − = − − =  ÷  ÷     ∫ ∫ ∫ ∫ Bài 12: Tính 2 3 3 0 sinI xcos xdx π = ∫ Giải: Đặt t = sinx ; dt cosxdx⇒ = Đổi cận: x 0 2 π t 0 1 5vansitran@gmail.com-01689583116 Khi đó: ( ) ( ) ( ) 1 1 4 6 2 2 3 3 3 2 3 2 3 5 0 0 0 0 1 1 sin sin 1 sin 1 . 0 4 6 12 t t I xcos xdx x x cosxdx t t dt t t dt π π   = = − = − = − = − =  ÷   ∫ ∫ ∫ ∫ Bài 13: Tính 2 2 sin 0 sin 2 x I e xdx π = ∫ Giải: Đặt t = sin 2 x ; s 2dt in xdx⇒ = Đổi cận: x 0 2 π t 0 1 Khi đó: 2 1 2 sin 0 0 1 sin 2 1. 0 x t t I e xdx e dt e e π = = = = − ∫ ∫ Bài 14: Tính 2 2 0 sin 2 1 x I dx cos x π = + ∫ Giải: Đặt t = 1 + cos 2 x ; s 2 s 2dt in xdx in xdx dt ⇒ = − ⇒ = − Đổi cận: x 0 2 π t 2 1 Khi đó: ( ) 1 2 2 2 0 2 1 2 sin 2 ln ln 2. 1 1 x dt dt I dx t cos x t t π = = − = = = + ∫ ∫ ∫ Bài 15: Tính 4 3 0 tanI xdx π = ∫ Giải: Đặt t = tanx ; ( ) ( ) 2 2 2 1 tan 1 1 dt dt x dx t dt dx t ⇒ = + = + ⇒ = + Đổi cận: x 0 4 π t 0 1 Khi đó: ( ) ( ) ( ) 2 1 1 1 1 1 3 2 4 3 2 2 2 2 0 0 0 0 0 0 2 1 1 1 2 1 tan 0 1 1 2 1 2 2 1 1 1 1 1 1 1 ln 1 ln 2 1 ln 2 . 0 2 2 2 2 2 d t t t t t I xdx dt t dt tdt dt t t t t t π +   = = = − = − = − =  ÷ + + + +   = − + = − = − ∫ ∫ ∫ ∫ ∫ ∫ Bài 16: Tính 1 0 1 1 I dx x = + ∫ Giải: 6vansitran@gmail.com-01689583116 Đặt t = x ; 2 2t x dx tdt⇒ = ⇒ = Đổi cận: x 0 1 t 0 1 Khi đó: ( ) ( ) 1 1 1 0 0 0 1 1 1 2 2 1 2 ln 1 2 1 ln 2 . 0 1 1 1 t I dx dt dt t t t t x   = = = − = − + = −  ÷ + + +   ∫ ∫ ∫ Bài 17: Tính 1 33 4 0 1I x x dx= − ∫ Giải: Đặt t = 3 4 3 4 3 2 3 1 1 4 x t x x dx t dt− ⇒ = − ⇒ = − Đổi cận: x 0 1 t 1 0 Khi đó: 1 1 33 4 3 4 0 0 1 3 3 3 1 . 0 4 16 16 I x x dx t dt t= − = = = ∫ ∫ Bài 18: Tính 0 2 1 1 2 4 I dx x x − = + + ∫ Giải: Ta có: ( ) ( ) 0 0 2 2 2 1 1 1 1 2 4 1 3 dx dx x x x − − = + + + + ∫ ∫ Đặt 1 3 tanx t+ = với ( ) 2 ; . 3 1 tan 2 2 t dx t dt π π   ∈ − ⇒ = +  ÷   Đổi cận: x -1 0 t 0 6 π Khi đó: 0 6 2 1 0 1 3 3 3 . 6 2 4 3 3 18 0 I dx dt t x x π π π − = = = = + + ∫ ∫ Bài 19: Tính 1 3 8 0 1 x I dx x = + ∫ Giải: Ta có: ( ) 1 1 3 3 2 8 4 0 0 1 1 x x dx dx x x = + + ∫ ∫ Đặt 4 tanx t= với ( ) 3 2 1 ; . 1 tan 2 2 4 t x dx t dt π π   ∈ − ⇒ = +  ÷   Đổi cận: x 0 0 t 0 4 π 7vansitran@gmail.com-01689583116 Khi đó: ( ) 1 1 3 3 2 4 4 2 8 2 4 0 0 0 0 1 1 tan 1 1 . 4 1 4 1 tan 4 4 16 1 0 x x t I dx dx dt dt t x t x π π π π + = = = = = = + + + ∫ ∫ ∫ ∫ Bài 20: Tính 1 1 ln e x I dx x + = ∫ Giải: Đặt 2 1 ln 1 ln 2 dx t x t x tdt x = + ⇒ = + ⇒ = Đổi cận: x 1 e t 1 2 Khi đó: ( ) 2 2 3 2 1 1 1 2 2 2 1 1 ln 2 .2 2 2 . 3 3 1 e x t I dx t tdt t dt x − + = = = = = ∫ ∫ ∫ Bài 21: Tính ( ) 1 0 ln 2 2 x I dx x − = − ∫ Giải: Đặt ( ) ln 2 2 dx t x dt x − = − ⇒ = − Đổi cận: x 1 1 t ln2 0 Khi đó: ( ) 1 0 ln 2 2 2 0 ln 2 0 ln 2 ln 2 ln 2 . 0 2 2 2 x t I dx tdt tdt x − = = − = = = − ∫ ∫ ∫ Bài 22: Tính 2 2 0 1 sin cosx I dx x π = + ∫ Giải: Đặt sin tanx t = với ( ) 2 ; 1 tan 2 2 t cosxdx t dt π π   ∈ − ⇒ = +  ÷   Đổi cận: x 0 2 π t 0 4 π Khi đó: 2 2 4 4 2 2 0 0 0 1 tan 1 sin 1 tan 4 cosx t I dx dt dt x t π π π π + = = = = + + ∫ ∫ ∫ Bài 23: Tính 2 3 1 sin I dx x π π = ∫ Giải: Đặt 2 2 1 2 tan 1 tan 2 2 2 1 x x dt t dt dx dx t   = ⇒ = + ⇒ =  ÷ +   8vansitran@gmail.com-01689583116 Ta tính: 2 2 1 1 2 1 . 2 sin 1 1 tdt dx dt t x t t t = = + + Đổi cận: x 3 π 2 π t 3 3 1 Khi đó: ( ) 1 2 3 3 3 1 1 1 3 1 ln ln ln3. 3 sin 3 2 3 I dx dt t x t π π = = = = − = ∫ ∫ Bài 24: Tính ( ) 1 1 1 ln e I dx x x = + ∫ Giải: Đặt 1 ln dx t x dt x = + ⇒ = Đổi cận: x 1 e t 1 2 Khi đó: ( ) 2 1 1 2 1 ln ln 2. 1 1 ln e dt I dx t x x t = = = = + ∫ ∫ Bài 25: Tính 3 1 5 0 x I x e dx= ∫ Giải: Đặt 3 2 2 3 3 dt t x dt x dx x dx= ⇒ = ⇒ = Đổi cận: x 0 1 t 0 1 Khi đó: 3 1 1 1 5 0 0 0 1 1 1 1 1 1 1 0 0 3 3 3 3 3 3 x t t t t e I x e dx te dt te e dt e= = = − = − = ∫ ∫ ∫ Bài 26: Tính 1 5 2 2 4 2 1 1 1 x I dx x x + + = − + ∫ Giải: Ta có: 1 5 1 5 1 5 2 2 2 2 2 2 2 4 2 2 1 1 1 2 1 1 1 1 1 1 1 1 1 1 x x x dx dx dx x x x x x x + + +   + +  ÷ +   = = − +   − + − +  ÷   ∫ ∫ ∫ Đặt 2 1 1 1t x dt dx x x   = − ⇒ = +  ÷   Đổi cận: x 1 1 5 2 + 9vansitran@gmail.com-01689583116 t 0 1 Khi đó: 1 2 0 1 dt I t = + ∫ Đặt ( ) 2 tan 1 tant u dt u du= ⇒ = + Đổi cận: x 0 1 t 0 4 π Vậy 1 2 4 4 2 2 0 0 0 1 tan . 4 1 1 tan 4 0 dt u I du du u t u π π π π + = = = = = + + ∫ ∫ ∫ Bài 27: Tính 2 3 1 1 dx I x x = + ∫ Giải: Ta có: 2 2 2 3 3 3 1 1 1 1 dx x dx x x x x = + + ∫ ∫ Đặt 3 2 3 2 2 2 1 1 2 3 3 tdt t x t x tdt x dx x dx= + ⇒ = + ⇒ = ⇒ = Đổi cận: x 1 2 t 2 3 Khi đó: ( ) ( ) ( ) 2 2 3 3 2 2 3 3 3 1 1 2 2 2 2 1 1 1 3 1 3 1 1 1 1 3 3 1 1 1 1 1 2 1 1 2 1 1 1 ln 1 ln 1 ln ln ln ln ln 3 3 1 3 2 3 3 2 1 2 2 2 2 1 2 1 dx x dx dt I dt t t t x x x x t t t t   = = = = − =  ÷ − − +   + +    −  − + = − − + = = − = =  ÷  ÷  ÷ + + −     − ∫ ∫ ∫ ∫ Bài 28: Tính 2 3 2 0 3 2 1 x I dx x x = + + ∫ Giải: Ta có: ( ) 2 2 3 3 2 2 0 0 3 3 2 1 1 x x dx dx x x x = + + + ∫ ∫ Đặt 1t x dt dx= + ⇒ = Đổi cận: x 0 2 t 2 3 Khi đó: ( ) ( ) ( ) ( ) ( ) ( ) 3 3 2 2 2 3 3 3 3 2 2 2 2 0 0 1 1 3 2 2 2 2 1 3 3 3 1 3 1 3 3 2 1 1 3 9 1 3 3 9 3 3 9 9ln 3 3 1 9 3 1 9 ln 3 ln1 1 3 9ln3 8 1 2 2 t t t t x x I dx dx dt dt x x t t x t t t dt t t t t − − + − − = = = = = + + +     = − + − = − + + = − − − + − + − = −  ÷  ÷     ∫ ∫ ∫ ∫ ∫ 10vansitran@gmail.com-01689583116 Bài 29: Tính ln2 2 2 0 3 3 2 x x x x e e I dx e e + = + + ∫ Giải: Đặt x x t e dt e dx= ⇒ = Đổi cận: x 0 ln2 t 1 2 Khi đó: ( ) ( ) ln2 ln 2 2 2 2 2 2 2 0 0 1 1 2 2 1 1 3 3 3 2 1 3 2 3 2 3 2 1 2 2 2 1 1 3 4 9 4 27 2 2ln 1 ln 2 2 ln3 ln 2 ln 4 ln3 2ln ln ln ln ln 1 1 1 2 2 3 4 3 16 x x x x x x x x e e e t I dx e dx dt dt e e e e t t t t dt dt t t t t + + +   = = = = − =  ÷ + + + + + + + +   = − = + − + = − − − = − = − = + + ∫ ∫ ∫ ∫ ∫ ∫ Bài 30: Tính ( ) 4 1 1 dx I x x = + ∫ Giải: Đặt 2 2x t dx tdt= ⇒ = Đổi cận: x 1 4 t 1 2 Khi đó: ( ) ( ) ( ) ( ) 4 2 2 2 2 1 1 1 1 2 1 1 2 2 1 1 1 1 2 2 1 4 2 ln ln 1 2 ln ln 2ln . 1 3 2 3 dx tdt dt I dt t t t t t t x x t t   = = = = − =  ÷ + + +   +   = − + = − =  ÷   ∫ ∫ ∫ ∫ Bài 31: Tính ( ) 1 3 2 0 1I x dx= − ∫ Giải: Đặt sin , 0; 2 x t t dx costdt π   = ∈ ⇒ =     Đổi cận: x 0 1 t 0 2 π Khi đó: ( ) ( ) ( ) ( ) 2 1 2 2 2 2 3 3 2 2 3 4 0 0 0 0 0 2 2 2 2 2 2 2 0 0 0 0 0 2 0 1 2 1 1 sin . . 2 1 1 1 1 1 1 sin 2 1 1 2 2 2 2 2 2 . . 1 4 2 4 4 2 8 4 2 2 2 8 0 1 1 8 8 8 cos t I x dx t costdt cos t costdt cos tdt dt t cos t cos t dt dt cos tdt cos tdt cos t dt dt co π π π π π π π π π π π π π +   = − = − = = = =  ÷   = + + = + + = + + + = = + + ∫ ∫ ∫ ∫ ∫ ∫ ∫ ∫ ∫ ∫ ∫ 2 0 1 sin 4 3 4 . . 2 8 16 8 4 8 16 16 0 t s tdt π π π π π π π = + + = + = ∫ [...]... x ⇒ dx = 2td Đổi cận: x 0 1 t 0 1 Khi đó: 1 I = 2 ∫ t sin tdt 0 u = t  du = dt ⇒ Đặt   dv = sin tdt v = −cosx Áp dụng công thức tính tích phân từng phần ta được: 1 1 1 1 I = −2 ( tcost ) + 2 ∫ costdt = −2 ( tcost ) + 2 ( sin t ) = 2 ( sin1 − cos1) 0 0 0 0 Xong lúc 1h49, ngày 09 tháng 04 năm 2009 23vansitran@gmail.com-01689583116 PHƯƠNG PHÁP TÍCH PHÂN TỪNG PHẦN  Tích phân các hàm số dạng P(x)sinax;... x dx x + x2 + 1 4 Giải: • Đặt t = x 2 ⇒ dt = 2 xdx Đổi cận: x 0 1 t 0 1 1 1 x 1 dt I =∫ 4 dx = ∫ 2 x + x +1 2 0  1 2 3 Khi đó: 0 t + ÷ +  2 4 1 • Đặt y = t + ⇒ dy = dt 2 Đổi cận: t 0 1 1 3 y 2 2 1 Khi đó: • Đặt z = I= 3 2 1 dt 1 dy ∫  1 2 3 = 2 ∫  2 20 1 3 2 t + ÷ + 2 y + ÷  2 4  4 3 2 y ⇒ dz = dy 4 3 13vansitran@gmail.com-01689583116 Đổi cận: 1 3 y 2 2 1 z 3 3 I= 3 2 1 2∫ 1 dy = 3 4... x + 2 ⇒ dt = ( cosx − sin x ) dx Đổi cận: π x 0 4 t 2 2+ 2 Khi đó: 2+ 2 ( t − 2 ) dt =2+ 2 1 − 2  dt = t − 2 ln t 2 + 2 = 2 + 2 − 2 ln 2 + 2 − 3 + 2 ln 3 = I= ∫ ) ∫  t÷ ( t 0  0 0  ( ( ) ) 3 = 2 − 1 + 2 ln 3 − ln 2 + 2  = 2 − 1 + 2 ln   2+ 2 π 2 Bài 49: Tính I = sin 2 x ( 1 + sin 2 x ) 3 dx ∫ 0 Giải: • Đặt t = 1 + sin 2 x + 2 ⇒ dt = 2sin xcosxdx = sin 2 xdx Đổi cận: π x 0 2 t 1 2 π 2 2 4 2... 2 2 2 2 2 Đặt t = ( b − a ) sin x + a ⇒ t = ( b − a ) sin x + a ⇒  tdt sin xcosxdx = 2 b − a2  Đổi cận: π x 0 2 t |a| |b| b b b−a tdt 1 1 = 2 t = 2 = Khi đó: I = ∫ 2 2 2 2 b −a a+b a b −a a t(b −a ) 2 Bài 52: Tính I = ∫ 0 x +1 dx 3 3x + 2 Giải: • Đặt t = 3 3 x + 2 ⇒ t 3 = 3x + 2 ⇒ 3t 2 dt = 3dx; x = Đổi cận: x t 0 2 2 2 3 t −2 2 5 2 3 t 2 dt = 1 t 4 + t dt = 1  t + t  2 = 1  42 − 4 2 − 1 = 37... Tính I = t3 − 2 3 2 ∫x 7 x2 + 9 Giải: • 2 2 2 Đặt t = x + 9 ⇒ t = x + 9 ( t > 0 ) ⇒ tdt = xdx; Đổi cận: x t 4 5 5 dt 1 t −3 5 1 7 = ln = ln Khi đó: ∫ 2 t −9 6 t +3 4 6 4 4 7 4 dx tdt tdt = 2 = 2 x x t −9 dx 18vansitran@gmail.com-01689583116 π 4 dx 1 + tan x 0 Bài 54: Tính I = ∫ Giải: • Đặt t = tan x ⇒ dt = Đổi cận: x 0 t 0 1 dt dt dx = ( 1 + tan 2 x ) dx ⇒ dx = = 2 2 cos x 1 + tan x 1 + t 2 π 4 1 1... xdx Đổi cận: x 0 1 t 1 2 2 2 2 2 3 1 1 1 1 1 1 1 32 1 12 2 2 I = ∫ ( t − 1) t dt − = ∫ t − t dt − = − + ∫ t dt − ∫ t dt 2 5 21 5 5 21 21 1 Khi đó: 5 3 1  1 52 2 1 32 2  2 1 2 2 2 2 1 1 1 2 4 2 2 2 1 2 2 = − + t − t ÷ = − + − − + = − + − =− + 5 2 5 2 31 5 5 5 5 3 3 5 5 3 15 15 2 ( ) 20vansitran@gmail.com-01689583116 1 x I=∫ dx Bài 58: Tính −1 5 − 4 x Giải: • Đặt t = 5 − 4 x ⇒ dt = −4dx Đổi cận:... ⇒ dt = e x dx Đổi cận: x 0 1 t 1 e Khi đó: e e e e d ( t2 ) dx dt tdt 1 2tdt 1 I = ∫ 2x = = = = e + 3 ∫ t ( t 2 + 3) ∫ t 2 ( t 2 + 3 ) 2 ∫ t 2 ( t 2 + 3) 2 ∫ t 2 ( t 2 + 3 ) 0 1 1 1 1 1 e e 1 1 1 1 1  1 e2 + 3  = ∫ 2 − 2 d ( t 2 ) = ln t 2 − ln ( t 2 + 3)  =  2 − ln ÷ ÷ 1 6 2 3 1 t t +3 6 4   1 Bài 62: Tính I = dx ∫ ( 11 + 5x ) 2 −2 Giải: • Đặt t = 11 + 5 x ⇒ dt = 5dx Đổi cận: x -2 1... x 1 e Bài 63: Tính I = ∫ Giải: • Đặt t = ln x ⇒ dt = dx x Đổi cận: x t 1 e 0 1 e 1 1 sin ( ln x ) I =∫ dx = ∫ sin tdt = −cost = −cos1 + cos 0 = 1 − cos1 Khi đó: 0 x 1 0 5 2 Bài 64: Tính I = ∫ x − 9dx 3 Giải: 22vansitran@gmail.com-01689583116 t2 + 9 t = x + x2 − 9 ⇒ x = 2t • Đặt 2 t + 9 t2 − 9 t2 − 9 2 x −9 = t − x = t − = ⇒ dx = dt 2t 2t 2t 2 Đổi cận: x 3 5 t 3 9 Khi đó: 5 9 2 9  t2 9 t − 9 t2 − 9... 13vansitran@gmail.com-01689583116 Đổi cận: 1 3 y 2 2 1 z 3 3 I= 3 2 1 2∫ 1 dy = 3 4 3 dz ∫ 3 2 3  3 1 z + y2 +  3 4 ÷ 4  4 2 Đặt z = tan u ⇒ dz = ( 1 + tan u ) du Đổi cận: 1 z 3 3 π π u 6 3 Khi đó: 2 2 • Ta được: I = 1 3 1 3 ∫ 1 3 0 ( 2 x + 1) 2 Giải: • Đặt t = 2 x + 1 ⇔ x = Đổi cận: x t 1 3 3 ∫ 1 3 dz = z +1 2 π dz 1 1 + tan u 1 π 3 = 2 ∫ 1 + tan 2 u du = 3 u π = 6 3 z +1 3π 6 6 π 3 x Bài 40: Tính I = ∫ = 2 dx t −1... − t ⇒ dx = −dt 2 Đổi cận: π 0 x 2 π t 0 2 Khi đó: π  π π sin  − t ÷ 0 2 2 co s t co s x 2  I = −∫ dt = ∫ dt = ∫ dx co s t + s int co s x + s in x π π  π  0 0 sin  − t ÷ + cos  − t ÷ 2 2  2  Đặt x = π 2 Vậy I + I = 2 I = ∫ 0 π 2 π sin x + cosx π π dx = ∫ dx = x 2 = ⇒ I = 2 4 sin x + cosx 0 0 π 2 sin 3 x dx sin 3 x + cos 3 x 0 Bài 2: Tính I = ∫ Giải: π − t ⇒ dx = −dt 2 Đổi cận: π 0 x 2 . 1vansitran@gmail.com-01689583116 PHƯƠNG PHÁP ĐỔI BIẾN SỐ Dấu hiệu Cách chọn 2 2 a x− Đặt x = |a| sint; với ; 2 2 t π π   ∈ −     hoặc. = Đổi cận: x 0 1 t 1 2 Khi đó: ( ) 1 4 3 4 0 1I x x dx= + ∫ = 2 4 5 1 2 1 1 31 . 1 4 20 20 t dt t   = =  ÷   ∫ Bài 7: Tính 2 5 0 sinI xcoxdx π = ∫ Giải: Đặt t = sinx ; dt cosxdx⇒ = Đổi. ⇒ = Đổi cận: x 1 e t 1 2 Khi đó: ( ) 2 1 1 2 1 ln ln 2. 1 1 ln e dt I dx t x x t = = = = + ∫ ∫ Bài 25: Tính 3 1 5 0 x I x e dx= ∫ Giải: Đặt 3 2 2 3 3 dt t x dt x dx x dx= ⇒ = ⇒ = Đổi cận:

Ngày đăng: 02/07/2014, 20:21

TỪ KHÓA LIÊN QUAN

w