Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 106 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
106
Dung lượng
4,36 MB
Nội dung
Vì sự nghiệp giáo dục Năm học 2009 - 2010 2008 Ngày soạn : 18/09/09 Ngày dạy : 22/09/09 Chủ đề 1 <t1> A/Mục tiêu Học xong tiết này HS cần phải đạt đợc : Kiến thức - Học sinh đợc củng cố định nghĩa và các tính chất của bất đẳng thức - Nắm đợc định nghĩa và một số tính chất bất đẳng thức. Biết vận dụng định nghĩa bất đẳng thức để chứng minh một số bất đẳng thức cơ bản. Kĩ năng - Rèn luyện kĩ năng biến đổi và rèn luyện khả năng t duy toán học thông qua chứng minh các bất đẳng thức Thái độ - Rèn luyện tính cẩn thận và chính xác, biết lựa chọn giải pháp hợp lý khi giải toán. B/Chuẩn bị của thầy và trò - GV: Nghiên cứu kĩ giáo án - HS: Ôn tập lại định nghĩa và các tính chất của bất đẳng thức C/Tiến trình bài dạy I. Tổ chức II. Kiểm tra bài cũ - HS1: Thế nào là một bất đẳng thức ? Cho ví dụ ? - HS2: Nêu các tính chất của bất đẳng thức ? Cho các ví dụ minh họa ? III. Bài mới A Lí thuyết 1) Định nghĩa bất đẳng thức. a nhỏ hơn b, kí hiệu là a < b, nếu a b < 0. a lớn hơn b, kí hiệu là a > b, nếu a b > 0. a nhỏ hơn hoặc bằng b, kí hiệu là a b, nếu a - b 0. a lớn hơn hoặc bằng b, kí hiệu là a b, nếu a - b 0. Ví dụ: VD1: 7 5 7 6 > vì ( 7 5) ( 7 6) 1 0 = > VD2: 1 3 1 1 3 4 3 4 < vì 1 3 1 1 1 0 3 4 3 4 2 = < ữ ữ VD3: a 2 + 1 < a 2 + 2 vì (a 2 + 1) - (a 2 + 2) = -1 < 0 2) Các tính chất của BĐT. + Tính chất 1: a > b b < a. + Tính chất 2: a > b và b > c a > c Giáo án Bồi dỡng HSG môn Đại số 9 Vì sự nghiệp giáo dục Năm học 2009 - 2010 2008 + Tính chất 3: a > b a + c > b + c + Tính chất 4: a > b, c > d a + c > b + d a > b, c < d a - c > b - d + Tính chất 5: a> b, c > 0 ac > bc ; a> b, <0 ac < bc + Tính chất 6: a > b 0, c > d 0 ac > bd + Tính chất 7: a > b > 0 a n > b n với mọi n * N ; a > b a n > b n (n lẻ) a b> a n > b n (n chẵn) 3, Một số bất đẳng thức thông dụng : a, Bất đẳng thức Côsi : Với 2 số dơng a , b ta có : ab ba + 2 Dấu đẳng thức xảy ra khi : a = b b, Bất đẳng thức Bunhiacôpxki : Với mọi số a ; b; x ; y ta có : ( ax + by ) 2 (a 2 + b 2 )(x 2 + y 2 ) Dấu đẳng thức xảy ra <=> y b x a = c, Bất đẳng thức giá trị tuyệt đối : baba ++ Dấu đẳng thức xảy ra khi : ab 0 B Các phơng pháp chứng minh bất đẳng thức 1. Phơng pháp 1 : Dùng định nghĩa Phơng pháp chứng minh A > B : - Bớc 1: Xét hiệu A B - Bớc 2: Chứng minh A B > 0 - Lu ý : A 2 0 với mọi A ; dấu '' = '' xảy ra khi A = 0 . Bài tập: *) Bài tập 1: Chứng minh bất đẳng thức sau: 2 a b ab 2 + ữ Bài làm : (Bất đẳng thức Côsi) Xét hiệu 2 2 2 a b a 2ab b 4ab ab 2 4 + + + = ữ 2 a b 0 2 = ữ Vậy: 2 a b ab 2 + ữ dấu = xảy ra khi a = b. *) Bài tập 2: Chứng minh rằng với mọi số a, b, x, y ta có 2 2 2 2 2 (a b )(x y ) (ax by)+ + + (Bất đẳng thức Bunhiacôpxki) Bài làm : Xét hiệu 2 2 2 2 2 (a b )(x y ) (ax by)+ + + = a 2 x 2 + a 2 y 2 + b 2 x 2 + b 2 y 2 - a 2 x 2 - b 2 y 2 2byax Giáo án Bồi dỡng HSG môn Đại số 9 Vì sự nghiệp giáo dục Năm học 2009 - 2010 2008 = (ay bx) 2 0 Vậy: 2 2 2 2 2 (a b )(x y ) (ax by)+ + + dấu = xảy ra khi ay = bx hay a b x y = *) Bài tập 3: Cho a, b, c, d là các số thực. Chứng minh rằng : 2 2 2 2 2 a b c d e a(b c d e)+ + + + + + + Bài làm : Xét hiệu 2 2 2 2 2 (a b c d e ) a(b c d e)+ + + + + + + = 2 2 2 2 2 2 2 2 a a a a ab b ac c ad d ae e 4 4 4 4 + + + + + + + ữ ữ ữ ữ ữ ữ ữ ữ = 2 2 2 2 a a a a b c d e 0 2 2 2 2 + + + ữ ữ ữ ữ Vậy: 2 2 2 2 2 a b c d e a(b c d e)+ + + + + + + dấu = xảy ra khi a b c d e 2 = = = = *) Bài tập 4: Với mọi số : x, y, z chứng minh rằng : x 2 + y 2 + z 2 +3 2(x + y + z) Bài làm : Ta xét hiệu : H = x 2 + y 2 + z 2 +3 - 2( x + y + z) = x 2 + y 2 + z 2 +3 - 2x - 2y - 2z = (x 2 - 2x + 1) + (y 2 - 2y + 1) + (z 2 - 2z + 1) = (x - 1) 2 + (y - 1) 2 + (z - 1) 2 Do (x - 1) 2 0 với mọi x (y - 1) 2 0 với mọi y (z - 1) 2 0 với mọi z => H 0 với mọi x, y, z Hay x 2 + y 2 + z 2 +3 2(x + y + z) với mọi x, y, z . Dấu bằng xảy ra <=> x = y = z = 1. *) Bài tập 5: Chứng minh rằng với mọi x, y ta đều có : x 4 + y 4 xy 3 + x 3 y Bài làm : Xét hiệu : x 4 + y 4 ( xy 3 + x 3 y ) = ( x 4 xy 3 ) + ( y 4 x 3 y ) = x( x 3 y 3 ) + y( y 3 x 3 ) = ( x y )( x 3 y 3 ) = ( x y ) 2 ( x 2 + xy + y 2 ) = ( x y ) 2 ( ) 2 2 3 1 x y y 2 4 + + 0 Vậy bất đẳng thức đã cho là đúng . Dấu = xảy ra khi x = y . *) Bài tập 6: Cho các số dơng a , b thoả mãn điều kiện a + b = 1 Chứng minh rằng : ( 1 + 1 a )( 1 + 1 b ) 9 (1) Bài làm : Giáo án Bồi dỡng HSG môn Đại số 9 Vì sự nghiệp giáo dục Năm học 2009 - 2010 2008 Ta có ( a + 1 a .)( b + 1 b ) 9 ab + a + b + 1 9 ab ( vì a,b > 0 ) a + b + 1 8 ab 2 8 ab 1 4 ab ( vì a + b = 1 ) ( a + b ) 2 4 ab ( a b ) 2 0 (2) Bất đẳng thức (2) đúng, các phép biến đổi là tơng đơng. Vậy bất đẳng thức (1) đợc chứng minh. Xảy ra dấu đẳng thức khi và chỉ khi a = b IV. Hớng dẫn về nhà *) Giải bài tập 7: Chứng minh bất đẳng thức : 2 22 22 + + baba Hớng dẫn: Xét hiệu : H = 2 22 22 + + baba = 4 )2()(2 2222 bababa +++ = 0)( 4 1 )222( 4 1 22222 =+ baabbaba . Với mọi a, b . Dấu '' = '' xảy ra khi a = b . ******************************* Ngày soạn : 20/09/09 Ngày dạy : 23/09/09 Chủ đề 1 <t2> A/Mục tiêu Học xong tiết này HS cần phải đạt đợc : Kiến thức - Học sinh đợc củng cố định nghĩa và các tính chất của bất đẳng thức - Nắm đợc định nghĩa và một số tính chất bất đẳng thức. Biết vận dụng các tính chất của bất đẳng thức để chứng minh một số bất đẳng thức cơ bản. Kĩ năng - Rèn luyện kĩ năng biến đổi và rèn luyện khả năng t duy toán học thông qua chứng minh các bất đẳng thức Thái độ - Rèn luyện tính cẩn thận và chính xác, biết lựa chọn giải pháp hợp lý khi giải toán. B/Chuẩn bị của thầy và trò Giáo án Bồi dỡng HSG môn Đại số 9 Vì sự nghiệp giáo dục Năm học 2009 - 2010 2008 - GV: Nghiên cứu kĩ giáo án - HS: Ôn tập lại định nghĩa và các tính chất của bất đẳng thức C/Tiến trình bài dạy I. Tổ chức II. Kiểm tra bài cũ - HS1: Viết các tính chất của bất đẳng thức ?. Giải bài tập 46/SBT - HS2: Giải bài tập 7 (tiết trớc) - HS3: Giải bài tập 45/SBT III. Bài mới 2. Phơng pháp 2 : Dùng tính chất của bất đẳng thức *) Bài tập 1 : Cho hai số x, y thoả mãn điều kiện x + y = 2. Chứng minh x 4 + y 4 2 Bài làm : - Ta có: (x 2 y 2 ) 2 0 (với mọi x, y) x 4 + y 4 2x 2 y 2 x 4 + y 4 + x 4 + y 4 x 4 + 2x 2 y 2 + y 4 2(x 4 + y 4 ) (x 2 + y 2 ) 2 (1) dấu = xảy ra khi x = y hoặc x = - y. - Mặt khác, ta có: (x y) 2 0 (với mọi x, y) x 2 + y 2 2xy 2(x 2 + y 2 ) (x + y) 2 x 2 + y 2 2 (2) (vì x + y = 2) dấu = xảy ra khi x = y. - Từ (1) và (2) x 4 +y 4 2 dấu= xảy ra khi x = y = 1. *) Bài tập 2 : Chứng minh rằng 2 2 2 3 a b c a b c 4 + + + Bài làm : Ta có: 2 2 1 1 a 0 a a 2 4 + + ữ 2 2 1 1 b 0 b b 2 4 + + ữ 2 2 1 1 c 0 c c 2 4 + + ữ Cộng vế theo vế của các bất đẳng thức trên ta đợc: 2 2 2 1 1 1 a b c a b c 4 4 4 + + + + + 2 2 2 3 a b c a b c 4 + + + dấu = xảy ra khi a = b = c = 1 2 . *) Bài tập 3 : Cho 0 < a, b, c, d < 1 . Chứng minh rằng : Giáo án Bồi dỡng HSG môn Đại số 9 Vì sự nghiệp giáo dục Năm học 2009 - 2010 2008 (1 - a)(1 - b)(1 - c)(1 - d) > 1 - a - b - c - d . Bài làm : Ta có : (1 - a)(1 - b) = 1 - a - b + ab Do a, b > 0 nên ab > 0 => (1 - a)(1 - b) > 1 - a - b . Do c < 1 nên 1 - c > 0 => (1 - a)(1 - b)(1 - c) > (1 - a - b)(1 - c) (1 - a)(1 - b)(1 - c) > 1 - a - b - c + ac + bc . Do 0 < a, b, c, d <1 nên 1 - d > 0 ; ac + bc > 0 ; ad + bd + cd > 0 =>(1 - a)(1 - b)(1 - c) > 1 - a - b - c => (1 - a)(1 - b)(1 - c)(1 - d) > (1 - a - b - c)(1 - d) => (1 - a)(1 - b)(1 - c)(1 - d) > 1 - a - b - c - d + ad + bd + cd => (1 - a)(1 - b)(1 - c)(1 - d) > 1 - a - b - c - d . *) Bài tập 4 : Cho 0 < a, b, c < 1 . Chứng minh rằng : 2a 3 + 2b 3 + 2c 3 < 3 + a 2 b + b 2 c + c 2 a Bài làm : Do 0 < a, b < 1 => a 3 < a 2 < a < 1 ; b 3 < b 2 < b < 1 ; ta có : (1 - a 2 )(1 - b) > 0 => 1 + a 2 b > a 2 + b => 1 + a 2 b > a 3 + b 3 hay a 3 + b 3 < 1 + a 2 b . Tơng tự : b 3 + c 3 < 1 + b 2 c ; c 3 + a 3 < 1 + c 2 a . => 2a 3 + 2b 3 + 2c 3 < 3 + a 2 b + b 2 c + c 2 a *) Bài tập 5 : Từ bất đẳng thức ( ) 2 a b 0 , hãy chứng minh các bất đẳng thức sau : +) ( ) 2 2 2 a b a b 2 2 + + +) ( ) 2 a b 4ab + +) ( ) 2 a b ab 2 + +) ( ) 2 1 1 (a,b 0) 4ab a b > + +) 1 1 4 (a,b 0) a b a b + > + +) 2 2 a b 2(a b ) (a,b 0)+ + > (BĐT Bu-nhi-a-côp-xki) +) a b 2 ab (a,b 0)+ > (BĐT cô-si) *) Học sinh tự luyện tại lớp các bài tập sau: *) Bài tập 6 : Chứng minh các bất đẳng thức sau: a) 3(m + 1) + m < 4(2 + m) b) b(b + a) ab c) a(a b) b(a b) d) 2 c 1 c 1 2 + *) Bài tập 7 : Cho các số dơng a, b, c có tích bằng 1. Giáo án Bồi dỡng HSG môn Đại số 9 Vì sự nghiệp giáo dục Năm học 2009 - 2010 2008 Chứng minh rằng (a + 1)(b + 1)(c + 1) 8 *) Bài tập 8 : Chứng minh các bất đẳng thức: a) (x + y + z) 2 3(xy + yz + xz) b) c 2 c 1 2 + *) Bài tập 9 : Cho a, b là hai số thoả mãn điều kiện a + b = 2. Chứng minh rằng a 4 + b 4 a 3 + b 3 . *) Bài tập 10 : Cho hai số x, y thoả mãn điều kiện x + y = 1. Chứng minh: a) x 2 + y 2 1 2 b) 1 8 x 4 + y 4 IV. Hớng dẫn về nhà - Xem lại các bài đã chữa - Làm tiếp các bài tập từ 6 đến 10 ******************************* Giáo án Bồi dỡng HSG môn Đại số 9 Vì sự nghiệp giáo dục Năm học 2009 - 2010 2008 Ngày soạn : 22/09/09 Ngày dạy : 03/10/09 Chủ đề 1 <t3> A/Mục tiêu Học xong tiết này HS cần phải đạt đợc : Kiến thức - Học sinh biết cách chứng minh bất đẳng thức bằng phơng pháp biến đổi tơng đơng và dùng bất đẳng thức quen thuộc nh Cô -si, Bu-nhi-a-côp -xki hoặc bất đẳng thức giá trị tuyệt đối Kĩ năng - Rèn luyện kĩ năng biến đổi và rèn luyện khả năng t duy toán học thông qua chứng minh các bất đẳng thức Thái độ - Rèn luyện tính cẩn thận và chính xác, biết lựa chọn giải pháp hợp lý khi giải toán. B/Chuẩn bị của thầy và trò - GV: - HS: C/Tiến trình bài dạy I. Tổ chức II. Kiểm tra bài cũ - HS1: Giải bài tập 10 câu a - HS2: Giải bài tập 10 câu b - HS2: Giải bài tập 9 III. Bài mới 3. Phơng pháp 3 : Dùng phép biến đổi tơng đơng - Quá trình chuyển từ một bất đẳng thức sang một bất đẳng thức tơng đơng gọi là một phép biến đổi tơng đơng . - Biến đổi bất đẳng thức cần chứng minh tơng đơng với bất đẳng thức đúng hoặc bất đẳng thức đã đợc chứng minh là đúng . - Khi có hai bất đẳng thức tơng đơng , nếu một bất đẳng thức đúng thì bất đẳng thức kia cũng đúng . Ta có sơ đồ : A > B A 1 > B 1 A 2 > B 2 A n > B n *) Bài tập 1 : Cho a, b là hai số dơng có tổng bằng 1 . Chứng minh rằng : 3 4 1 1 1 1 + + + ba Giải: Giáo án Bồi dỡng HSG môn Đại số 9 Vì sự nghiệp giáo dục Năm học 2009 - 2010 2008 Dùng phép biến đổi tơng đơng 3(a + 1 + b + 1) 4(a + 1) (b + 1) 9 4(ab + a + b + 1) (vì a + b = 1) 9 4ab + 8 1 4ab (a + b) 2 4ab Bất đẳng thức cuối đúng . Suy ra điều phải chứng minh . *) Bài tập 2 : Cho a, b, c là các số dơng thoả mãn : a + b + c = 4 Chứng minh rằng : (a + b)(b + c)(c + a) a 3 b 3 c 3 Giải: Từ : (a + b) 2 4ab , (a + b + c) 2 = [ ] cbacba )(4)( 2 +++ => 16 4(a + b)c => 16(a + b) 4(a + b) 2 c 16 abc => a + b abc Tơng tự : b + c abc c + a abc => (a + b)(b + c)(c + a) a 3 b 3 c 3 *) Bài tập 3 : Chứng minh bất đẳng thức : 3 33 22 + + baba ; trong đó a > 0 ; b > 0 Giải : Dùng phép biến đổi tơng đơng : Với a > 0 ; b > 0 => a + b > 0 3 33 22 + + baba + + + 2 ).( 2 22 ba baba ba . 2 2 + ba a 2 - ab + b 2 2 2 + ba 4a 2 - 4ab + 4b 2 a 2 + 2ab + b 2 3a 2 - 6ab + 3b 2 = 3(a 2 - 2ab + b 2 ) 0 ( ) 2 3 a b 0 Bất đẳng thức cuối cùng đúng ; suy ra : 3 33 22 + + baba Dấu = xảy ra a = b *) Bài tập 4 : Cho 2 số a, b thoả mãn a + b = 1 . CMR a 3 + b 3 + ab 2 1 Giải : Ta có : a 3 + b 3 + ab 2 1 <=> a 3 + b 3 + ab - 2 1 0 <=> (a + b)(a 2 - ab + b 2 ) + ab - 2 1 0 <=> a 2 + b 2 - 2 1 0 . Vì a + b = 1 <=> 2a 2 + 2b 2 - 1 0 Giáo án Bồi dỡng HSG môn Đại số 9 Vì sự nghiệp giáo dục Năm học 2009 - 2010 2008 <=> 2a 2 + 2(1-a) 2 - 1 0 ( vì b = a -1 ) <=> 4a 2 - 4a + 1 0 <=> ( 2a - 1 ) 2 0 Bất đẳng thức cuối cùng đúng . Vậy a 3 + b 3 + ab 2 1 Dấu '' = '' xảy ra khi a = b = 2 1 *) Bài tập 5 : Với a > 0 , b > 0 . Chứng minh bất đẳng thức : a b a a b b Giải : Dùng phép biến đổi tơng đơng : a b a a b b ( )() baabbbaa ++ 0 [ ] 0)()()( 33 ++ baabba 0)())(( +++ baabbababa 0)2)(( ++ bababa 2 ( a b )( a b ) 0+ Bất đẳng thức cuối đúng ; suy ra : a b a a b b *) Bài tập 6 : Cho các số dơng a , b thoả mãn điều kiện a + b = 1 Chứng minh rằng : ( 1 + 1 a )( 1 + 1 b ) 9 (1) Giải: Ta có ( a + 1 a .)( b + 1 b ) 9 ab + a + b + 1 9 ab ( vì a,b > 0 ) a + b + 1 8 ab 2 8 ab ( vì a + b = 1 ) ( a + b ) 2 4 ab ( a b ) 2 0 (2) Bất đẳng thức (2) đúng các phép biến đổi là tơng đơng vậy bất đẳng thức (1) đợc chứng minh. Xảy ra dấu đẳng thức a = b . 4. Phơng pháp 4 : Dùng các bất đẳng thức quan trọng và quen thuộc - Kiến thức : Dùng các bất đẳng thức quen thuộc nh : Cô-si , Bu-nhi-a-côp-xki , bất đẳng thức chứa dấu giá trị tuyệt đối để biến đổi và chứng minh , - Một số hệ quả từ các bất đẳng thức trên : x 2 + y 2 2xy Với a, b > 0 , 2+ a b b a *) Bài tập 7 : Giả sử a, b, c là các số dơng , chứng minh rằng: Giáo án Bồi dỡng HSG môn Đại số 9 [...]... bất đẳng thức về ba cạnh của tam giác a , b, c là độ dài ba cạnh của tam giác a < b + c (1) b < a + c (2) c < a + b (3) Từ 3 bất đẳng thức về tổng ba cạnh của tam giác ta suy ra đợc 3 bất đẳng thức về hiệu hai cạnh a < b + c (1) a b < c (4) b < a + c (2) b c < a (5) c < a + b (3) c a < b (6) *) Bài tập 1: Cho tam giác ABC có chu vi 2p = a + b + c (a, b , c là độ dài các cạnh của ) Chứng minh... 4) (3k + 1)4(k +1)2 12k3 + 28k2 + 19k + 4 12k3 + 28k2 + 20k +4 k 0 (đúng) => (**) đúng với mọi k 1 Vậy (*) đúng với mọi số nguyên dơng n IV Hớng dẫn về nhà - Xem lại các bài đã chữa - GV giới thiệu thêm một số phơng pháp chứng minh bất đẳng thức khác nh phơng pháp làm trội, tam thức bậc hai, và những ứng dụng của bất đẳng thức để giải các dạng toán khác Đề nghị học sinh có thể tìm hiểu thêm... tơng ứng f(x) giảm đi thì hàm số y = f(x) đợc gọi là hàm nghịch biến (hàm số y = f(x) gọi là nghịch biến trong khoảng nào đó nếu với mọi x 1 , x2 trong khoảng đó sao cho x1 < x2 thì f(x1) > f(x2)) 4) Dấu hiệu nhận biết hàm đồng biến và hàm nghịch biến Hàm bậc nhất số y = ax + b ( a 0 ) - Nếu a > 0 thì hàm số y = ax + b luôn đồng biến trên Ă - Nếu a < 0 thì hàm số y = ax + b luôn nghịch biến trên Ă Phần... các hàm số f(x) = mx - 2 và g(x) = m + 1 x + 5 (m 0 ) Chứng minh rằng: a) Hàm số f(x) + g(x) là hàm số bậc nhất đồng biến b) Hàm số f(x) - g(x) là hàm số bậc nhất nghịch biến Học sinh cần tính tổng và hiệu của hai hàm số trên sau đó xét dấu của hệ số a trong từng trờng hợp ) ( 2 2 Cho hàm số y = m 4 x ( 2m + n ) ( 5m n ) x 3 Với m = ? n = ? thì hàm số là hàm số bậc nhất, nghịch biến ? Hớng dẫn: . hơn b, kí hiệu là a < b, nếu a b < 0. a lớn hơn b, kí hiệu là a > b, nếu a b > 0. a nhỏ hơn hoặc bằng b, kí hiệu là a b, nếu a - b 0. a lớn hơn hoặc bằng b, kí hiệu là a. bất đẳng thức 1. Phơng pháp 1 : Dùng định nghĩa Phơng pháp chứng minh A > B : - Bớc 1: Xét hiệu A B - Bớc 2: Chứng minh A B > 0 - Lu ý : A 2 0 với mọi A ; dấu '' = ''. tập 1: Chứng minh bất đẳng thức sau: 2 a b ab 2 + ữ Bài làm : (Bất đẳng thức Côsi) Xét hiệu 2 2 2 a b a 2ab b 4ab ab 2 4 + + + = ữ 2 a b 0 2 = ữ Vậy: 2 a b ab 2 +