Định nghĩa theo tiêu chuẩn AFNOR Pháp “Robot là một cơ cấu chuyển đội tự động có thể chương trình hóa, lặp lại cácchương trình, tổng hợp các chương trình đặt ra trên sườn các trục tọa đ
Trang 1BỘ CÔNG THƯƠNG TRƯỜNG ĐẠI HỌC CÔNG NGHIỆP HÀ NỘI
TRƯỜNG CƠ KHÍ - Ô TÔ KHOA CƠ ĐIỆN TỬ
-BÁO CÁO
ĐỒ ÁN MÔN HỌC CƠ ĐIỆN TỬ
Đề tài:
NGHIÊN CỨU VÀ THIẾT KẾ ROBOT CHUỖI KÍN
Giáo viên hướng dẫn: TS Trần Ngọc Tiến
Sinh viên thực hiện: Phạm Duy Khánh - MSV: 2021603907
Phạm Gia Khiêm - MSV: 2021602719 Nguyễn Văn Hưng - MSV: 2021603520 Nguyễn Đức Huy - MSV: 2021602494Lớp: 20234ME6052001
Hà Nội – 2024
Trang 2LỜI MỞ ĐẦU
Thế kỷ XXI thế kỷ của khoa học và công nghệ Tất cả các ngành kỹ thuật đều
có những bước tiến vượt bậc và đạt được nhiều thành tựu to lớn Với xu thế các ngànhcông nghệ hướng tới sự kết hợp với nhau để tạo ra các sản phẩm ngày càng hiện đại,tối ưu Sự kết hợp những công nghệ hiện đại đó đã cho ra đời công nghệ chuyên ngành
“Cơ điện tử” Trước động lực là nhu cầu của tương lai và những khó khăn thử tháchtrước mắt chuyên ngành “Cơ điện tử” đang phát triển mạnh mẽ Ngành đã chế tạo ranhững Robot có nhiều tính năng ưu việt, khẳng định và thiết kế trong bước đầu tiên vềcông nghệ Ngày càng chứng tỏ “Cơ điện tử” là sự kết hợp hoàn hảo Để đáp ứngnhững yêu cầu thiết lập hiện nay của xã hội và sự cần thiết của sản phẩm mà chúng em
đã thực hiện nghiên cứu đề tài: “Nghiên cứu và thiết kế Robot chuỗi kín”
Đây là đề tài có tính ứng dụng thực tế cao Có thể áp dụng để tạo ra nhiều robotcấu trúc phục vụ trong sản xuất sản phẩm và đề tài này giúp sinh viên sử dụng nhữngkiến thức đã học vào thực tế Việc nghiên cứu đề tài đồng thời thúc đẩy sự thú vị họctập, khả năng tuy duy sáng tạo kỹ thuật cho sinh viên sau Đề tài tài thực sự hữu íchcho việc phát triển các ngành ở tương lai Sau khi nhận được đề tài chúng tôi đã nỗ lựctìm hiểu và thực hiện thời gian có hạn đề tài không tránh được những thiếu sót nhấtđịnh rất mong các Thầy (Cô) giáo và các bạn góp ý bổ sung để đề tài hoàn thiện hơn
Chúng em xin chân thành cảm ơn !
Trang 3CHƯƠNG 1 TỔNG QUAN HỆ THỐNG
1.1 Lịch sử phát triển robot công nghiệp
Ngay sau chiến tranh thế giới thứ 2, ở Hoa Kì đã xuất hiện những tay máy chấphành điều khiển từ xa trong các phòng thí nghiệm về vật liệu phóng xạ Vào nhữngnăm 50 của thế kỉ 20, bên cạnh những tay máy chấp hành cơ khí đó, đã xuất hiện cáctay máy chấp hành thủy lực và điện tử
Năm 1961, chiếc robot công nghiệp đầu tiên được đưa vào sử dụng ở nhà máyGenaral Motor tại Trenton, New Jersey, Hoa Kì Năm 1967, Nhật Bản mới nhập khẩuchiếc robot công nghiệp đầu tiên từ công ty AMF của Hoa Kì Đến năm 1990, có hơn
40 công ty Nhật Bản đưa ra thị trường nhiều loại robot nổi tiếng
Từ những năm 70, việc nghiên cứu và nâng cao tính năng của robot đã chú ýnhiều đến sự lắp đặt thêm các cảm biến ngoại tín hiệu để nhận biết môi trường làmviệc Một lĩnh vực nhiều phòng thí nghiệm quan tâm là robot tự hành Các nghiên
cứu robot tự hành bắt chước hoạt động chân người, chân động vật Các loạirobot này chưa có ứng dụng nhiều trong công nghiệp, tuy nhiên các loại xe robot(robotcar) lại nhanh chóng được đưa vào ứng dụng trong các hệ thống sản xuất linhhoạt
Từ những năm 80, nhất là những năm 90, do áp dụng rộng rãi các ứng dụng kĩthuật về vi xử lý và công nghệ thông tin, số lượng robot công nghiệp đã gia tăng, giáthành giảm đi rõ rệt, tính năng có nhiều bước tiến vượt bậc Nhờ vậy robot côngnghiệp đã có chỗ đứng trong các dây chuyền sản xuất tự động
1.2 Định nghĩa và phân loại robot
1.2.1 Định nghĩa
Có nhiều định nghĩa robot cùng tồn tại, chúng ta hãy cùng tham khảo một sốđịnh nghĩa như sau:
Định nghĩa theo từ điển New World College
“Robot là một kết cấu cơ khí có hình dạng bất kì, được xây dựng để thực hiệnnhững công việc bằng tay của con người”
Các định nghĩa sau này bao gồm các cánh tay cơ khí, các máy móc điều khiển
số, các máy móc di chuyển theo kiểu bước đi và mô phỏng hình dáng con người Cácrobot công nghiệp ngày này chỉ thực hiện một phần công việc của con người
Trang 4Các robot ban đầu thường được gọi là các tay máy (Manipulator).
Định nghĩa theo hiệp hội robot công nghiệp Nhật Bản
Định nghĩa này mang tính khái quát nhất của tất cả các định nghĩa được sửdụng Nó bao gồm tất cá các thiết bị tay máy và có thể xem khi định nghĩa một robotsau này
“Robot là một máy, cơ cấu thường gồm một số bộ phận phân đoạn được nối vớiphân đoạn khác bằng khớp quay hay khớp trượt nhằm mục đích để gắp hay di chuyểncác đối tượng, thường có một số bậc tự do Nó có thể điều khiển bởi một nguồn kíchhoạt, một hệ thống điện tử có thể lập trình được hay một hệ thống logic nào đó”
Định nghĩa theo tiêu chuẩn AFNOR (Pháp)
“Robot là một cơ cấu chuyển đội tự động có thể chương trình hóa, lặp lại cácchương trình, tổng hợp các chương trình đặt ra trên sườn các trục tọa độ, có khả năngđịnh vị, định hướng, di chuyển các đối tượng vật chất (chi tiết, dụng cụ gá lắp.v.v.)theo những hành trình thay đổi đã chương trình hóa nhằm thực hiện các nhiệm vụ côngnghệ khác nhau.”
Định nghĩa theo hiệp hội robot công nghiệp Hoa Kì
“Robot là một tay máy có nhiều chức năng có thể lập trình, được thiết kế để dichuyển vật liệu, các phần tử, linh kiện, các dụng cụ và thiết bị đặc biệt thông qua việcthay đổi các chương trình hoạt động đã được lập để thực hiện các nhiệm vụ khácnhau.”
Định nghĩa theo hiệp hội robot Anh
“Robot công nghiệp là một thiết bị có thể được lập trình lại, được thiết kế đểthực hiện hai nhiệm vụ cầm nắm và vận chuyển các phần tử, linh kiện, các dụng cụhoặc các công cụ chế tạo đặc biệt thông qua việc thay đổi các chương trình hoạt động
đã được thiết lập để thực hiện các tác vụ gia công khác nhau.”
Định nghĩa GOST (Nga)
“Robot là một máy tự động liên kết giữa một tay máy và một cụm điều khiểnchương trình hóa, thực hiện một chu trình công nghệ một cách chủ động với sự điềukhiển có thể thay thế những chức năng tương tự con người.”
Như vậy, qua các định nghĩa trên, ta có thể hiểu đơn giản robot công nghiệp làmột loại thiết bị được thiết kế và chế tạo để phục vụ một số hoạt động trong quá trình
Trang 5sản xuất, thông qua các chương trình được thiết lập sẵn, và có thể thay đổi tùy vàomục đích sử dụng.
1.2.2 Phân loại robot
Việc phân nhóm, phân loại robot có thể dựa trên những yếu tố kĩ thuật khácnhau Dưới đây là một số cách phân loại chủ yếu:
Phân loại theo số bậc tự do
Bậc tự do của cơ cấu là số thông số độc lập cần cho trước để xác định hoàn toàn
vị trí của các khâu trong cơ cấu khi cơ cấu hoạt động Điều đó có nghĩa mỗi thông sốđộc lập sẽ là một quy luật cho trước để xác định quy luật chuyển động của cơ cấu.Khâu có quy luật chuyển động cho trước được gọi là khâu dẫn, khâu dẫn được nối vớigiá bằng một khớp loại 5 vì khớp loại 5 chỉ có một thông số xác định
Phân loại theo cấu trúc động học
Một robot được gọi là robot tuần tự hay robot chuỗi hở nếu cấu trúc động họccủa chúng có dạng một chuỗi động học hở, gọi là robot song song nếu cấu trúc động
Trang 6học của chúng có dạng một chuỗi đóng và gọi là robot hỗn hợp nếu nó bao gồm hailoại chuỗi hở và chuỗi đóng.
Hình 1.3 Cấu trúc chuối song song
Hình 1.2 Robot song song
Trang 7Nhìn nhận một cách tổng quát thì robot song song có nhiều ưu điểm vì chúng
có độ cứng vững cao hơn, khả năng tải cao hơn, nhưng không gian làm việc nhỏ hơn
và cấu trúc phức tạp hơn Tuy nhiên trong các đơn vị công nghiệp lắp ráp, hàn xì,đúc,.v.v thường sử dụng các robot chuỗi động hở vì khả năng vận hành linh hoạt vàthiết kế đơn giản
Như trong hình mô tả về robot hàn chuỗi hở, nó có thể tùy ý thao tác các hoạtđộng trong một không gian làm việc rộng và điều chỉnh được hướng và vị trí của mũi hàn
1.3 Tổng quan về chuỗi động học
Chuỗi động học là một chuỗi các liên kết động học được kết nối với nhau, được
sử dụng để truyền chuyển động hoặc lực trong một hệ thống cơ học Chuỗi động họcbao gồm một chuỗi các liên kết được kết nối với nhau tạo thành một vòng khép kín,trong đó mỗi liên kết được kết nối với ít nhất một liên kết khác thông qua một khớpnối Các liên kết trong chuỗi động học có thể cứng hoặc mềm, và các khớp nối có thể
là cặp thấp hơn hoặc cặp cao hơn, tùy thuộc vào loại chuyển động mà chúng cho phép
Có một số loại chuỗi động học, bao gồm:
- Chuỗi động học mở
- Chuỗi động học khép kín
- Chuỗi động học phẳng
- Chuỗi động học nối tiếp
- Chuỗi động học song song
Hình 1.4 Robot hàn chuỗi hở
Trang 8Chuỗi động học mở: Loại chuỗi động học này có ít nhất một mắt xích không
được kết nối với bất kỳ mắt xích nào khác và được sử dụng để truyền chuyển độnghoặc lực giữa các bộ phận khác nhau của hệ thống cơ học
Chuỗi động học khép kín: Loại chuỗi động học này có tất cả các mắt xích
được kết nối với ít nhất một mắt xích khác và tạo thành một vòng khép kín Được sửdụng để truyền chuyển động hoặc lực giữa các bộ phận khác nhau của hệ thống cơhọc
Chuỗi động học phẳng: Loại chuỗi động học này được sử dụng để truyền
chuyển động hoặc lực trong mặt phẳng hai chiều và có thể có cấu hình mở hoặc đóng
Chuỗi động học nối tiếp: Loại chuỗi động học này bao gồm một loạt các liên
kết được kết nối với nhau được sắp xếp theo cấu hình tuyến tính và được sử dụng đểtruyền chuyển động hoặc lực giữa các bộ phận khác nhau của hệ thống cơ học
Chuỗi động học song song: Loại chuỗi động học này bao gồm một loạt các
liên kết được kết nối với nhau được sắp xếp theo cấu hình song song và được sử dụng
để truyền chuyển động hoặc lực giữa các bộ phận khác nhau của hệ thống cơ học
Chuỗi động học là một yếu tố quan trọng trong thiết kế và phân tích các hệthống cơ học vì chúng đóng vai trò quan trọng trong việc truyền chuyển động và lựctrong hệ thống
1.4 Tổng quan về robot chuỗi kín
Robot chuỗi kín (hay còn gọi là robot chuỗi đóng kín) là một loại robot đượcthiết kế để hoạt động trong môi trường không gian hạn chế, nơi mà việc tiếp xúc vớimôi trường bên ngoài cần được hạn chế Điều này đặc biệt hữu ích trong các ứng dụngcông nghiệp, nơi robot cần làm việc trong điều kiện bụi bẩn, nhiệt độ cao, hoặc trongkhông gian hẹp
Hình 1.5 Chuối động 8 khâu 10 khớp
Trang 91.5 Ứng dụng của robot chuỗi kín
1.5.1 Sản xuất trong môi trường bụi bẩn
Robot chuỗi kín thích hợp cho việc lắp ráp và kiểm tra sản phẩm trong môitrường có bụi bẩn, như trong ngành công nghiệp kim loại, gỗ, hay thậm chí trong môitrường khai thác mỏ
1.5.2 Sản xuất trong không gian hẹp
Robot chuỗi kín có thể hoạt động trong không gian hẹp, như trong quy trình sảnxuất linh kiện điện tử hoặc trong quá trình lắp ráp sản phẩm phức tạp
1.5.3 Ứng dụng trong y tế:
Robot chuỗi kín được sử dụng trong phẫu thuật, nơi việc duy trì không giansạch và hạn chế tiếp xúc với môi trường bên ngoài là quan trọng
1.6 Mô tả nghiên cứu
Nghiên cứu về cơ cấu máy có thể dẫn đến việc tạo ra các thiết kế mới, cải tiếnquy trình và tối ưu hóa sự tương tác giữa các thành phần trong hệ thống, đóng vai tròquan trọng trong tối ưu hóa hiệu suất, tăng cường chất lượng và thích ứng với sự biếnđổi, đồng thời tạo ra giá trị kinh tế và phát triển bền vững Để góp phần vào việc giải
quyết vấn đề này, chúng em đã chọn đề tài “Nghiên cứu và thiết kế Robot chuỗi kín”
1.6.1 Giới hạn, phạm vi nghiên cứu
Trong đồ án này, ta sẽ giải quyết các vấn đề cụ thể như sau:
+ Cho trước số bậc tự do của chuỗi động học và số khâu lớn nhất mà chuỗiđộng học phải có, từ đó tìm ra được bộ thông số khâu, khớp, mạch vòng mà các khâu
sẽ được bố trí để tạo thành chuỗi động học
+ Ứng dụng các chuỗi riêng biệt để mô hình hóa được các chuỗi động học.+ Áp dụng phương pháp ký hiệu Franke, để tăng tính hiệu quả trong quá trìnhtổng hợp chuỗi động học
+ Đánh giá tính di động của một loại chuỗi động học cụ thể
1.6.2 Ý nghĩa của việc nghiên cứu xây dựng thiết kế chuỗi động học
Việc xây dựng cấu trúc cơ cấu chuỗi động học có ý nghĩa quan trọng trongnghiên cứu và ứng dụng của chuỗi động học Dưới đây là một số ý nghĩa của việc này:
Hiểu rõ hơn về mối quan hệ giữa các yếu tố: Bằng cách xây dựng cấu trúc cơ
cấu chuỗi động học, chúng ta có thể phân tích và hiểu rõ hơn về mối quan hệ giữa các
Trang 10biến động trong hệ thống Điều này giúp chúng ta định rõ các yếu tố ảnh hưởng vàcách chúng tương tác với nhau qua thời gian.
Dự đoán và dự báo: Cấu trúc cơ cấu chuỗi động học cung cấp cơ sở để xây
dựng các mô hình dự đoán và dự báo Các mô hình này có thể sử dụng để đưa ra các
dự đoán về các sự kiện tương lai, cũng như đưa ra các kịch bản khả thi về diễn biếntương lai của hệ thống
Quản lý và điều khiển: Hiểu rõ cấu trúc cơ cấu chuỗi động học giúp chúng ta
thiết lập các chiến lược quản lý và điều khiển hiệu quả Bằng cách định rõ các mốiquan hệ và tương tác trong hệ thống, chúng ta có thể thiết kế các biện pháp can thiệp
và điều chỉnh để đạt được các mục tiêu cụ thể
Tối ưu hoá và cải thiện sản xuất: Cấu trúc cơ cấu chuỗi động học giúp chúng
ta nhận diện các vấn đề và cơ hội trong hệ thống, từ đó tối ưu hóa quy trình và cảithiện hiệu suất hoạt động Điều này có thể làm tăng hiệu suất sản xuất, giảm thiểu lãngphí và tăng cường sự linh hoạt của hệ thống
Đánh giá trước khi chế tạo: Việc đánh giá được những cơ cấu trước khi đem
ra chế tạo là vô cùng cần thiết Sau khi đánh giá chúng ta có thể lựa chọn cơ cấu phùhợp với yêu cầu và mong muốn, đảm bảo hiệu suất và linh hoạt
Trang 11CHƯƠNG 2 CƠ SỞ LÝ THUYẾT
2.1 Phương pháp thiết kế cấu trúc robot chuỗi kín sử dụng lý
thuyết nhóm đối xứng hữu hạn
2.1.1 Các ký hiệu của cấu trúc cơ cấu theo Franke
Khi xem xét sự ràng buộc của bất kỳ cơ chế nào, một sự khác biệt quan trọng
có thể được thực hiện giữa các liên kết nhị phân và tất cả các đơn vị khác, Đối với tất
cả các đơn vị lớn hơn, ternary, quaternary, v.v (trong bất kỳ loại nào chúng xảy ratrong một chuỗi nhất định) luôn có thể được xâu chuỗi với nhau theo bất kỳ cách nàotrong một chuỗi khớp nối, mà không nhất thiết gây nguy hiểm cho sự ràng buộc củaliên kết Mặt khác, độc lập với sự sắp xếp của các đơn vị lớn hơn, một chuỗi các đơn
vị nhị phân không bao giờ có thể dài hơn hai liên kết nếu liên kết có một mức độ diđộng hoặc nói chung không thể chứa nhiều hơn (n + 1) liên kết trong chuỗi đơn giản(tức là không có nhánh) nếu toàn bộ liên kết có n mức độ di chuyển
Vì lý do này, Franke phân biệt giữa các đơn vị nhị phân và tất cả những đơn vịkhác Một liên kết đầu tiên được xác định bởi mô hình trong đó các đơn vị lớn hơnđược kết nối: mỗi đa giác được coi là một cơ thể cứng nhắc có một số khớp có sẵnxung quanh ngoại vi của nó Chúng được liên kết với các khớp trên các khâu, bao gồmmột khớp nối trực tiếp (hai phần tử được nối để tạo thành một cặp động học) hoặc củamột hoặc nhiều đơn vị nhị phân trong một chuỗi
sự nối trực tiếp
Trang 12Với mục đích thiết lập danh sách tra cứu về các liên kết mặt phẳng, các khớpnối đơn giản, nhưng sau đó có thể được chỉ ra rằng phương pháp này có thể dễ dàngđược điều chỉnh để bao gồm nhiều khớp Một khớp đơn giản được định nghĩa là một
khớp tạo thành một cặp động học của chính xác hai phần tử khớp động học từ haithành viên liền kề
Hình 2.6: Một cơ chế may được sử dụng trong sản xuất giày.
Một so sánh được thực hiện giữa bốn phương pháp biểu diễn cơ chế từ máymay giày, tại Hình 2.2 ký hiệu của Reuleaux, tại Hình 2.3 sơ đồ động học thôngthường và cuối cùng tại Hinh 2.4 sơ đồ biểu tượng được đưa ra theo ý tưởng củaFranke
Hình 2.7: Ký hiệu động học của Reuleaux
Trang 132.1.2 Quy trình tính toán kết cấu của một chuỗi
+ Bước 1: Liệt kê tất cả các kết hợp có thể của số lượng các kích cỡ khác nhau
của các đơn vị, theo lý thuyết Chebyshev-Gruebler, như được thể hiện trong Bảng 1,điều này có thể dễ dàng tính toán nhất bằng cách sử dụng thuật toán của Crossley Tuynhiên, để loại bỏ nhiều chuỗi có khả năng chuyển động bị phân đoạn, số lượng cácmắc nối tối đa trong một mắc nối đơn không được vượt quá một nửa số mắc nối trongchuỗi
+ Bước 2: Sử dụng ký hiệu biểu tượng, sắp xếp các "vòng" có sẵn (đại diện cho
tất cả các mắc nối có hình đa giác) thành "phân tử" sao cho tất cả các valency được
Hình 2.8: Ký hiệu động học
thông thường cho cơ cấu
Hình 2.4: Ký hiệu tượng trưng của Franke
Trang 14thỏa mãn Điều này đòi hỏi một chút khéo léo Trong mỗi lớp có thể có một số cấu trúcphân tử khả dụng: ví dụ, trong Hình 2.18 có ba trong số các kết hợp có thể của bốnvòng ba-valent và một vòng bốn-valent Ở giai đoạn này không chú trọng vào nội dungcủa liên kết: loại kết nối được để không xác định.
Tuy nhiên, từ tập hợp đầy đủ của tất cả các "phân tử" có thể có, những "phântử" rơi vào một trong hai loại được giải thích dưới đây, bây giờ phải bị loại bỏ vìkhông hợp lệ
Hình 2.9: Các mẫu phân tử khác nhau với các thành phần giống nhau.
+ Bước 3: Chuyển sự chú ý vào đa dạng của các kết nối có thể có, xem xét tập
hợp các cấu trúc phân tử để xác định số lượng và phân nhóm của các dải kết nối trongmỗi cấu trúc Phân phối các đơn vị nhị phân có sẵn vào các dải này, sử dụng mã đượcthiết lập trong (hình 2.18), và nhớ đến các hiệu ứng của sự phân phối này đối với bậc
tự do cục bộ Ví dụ, nơi hai vòng được kết nối hai lần (như trong Hình 2.18, hàng thứhai), không phù hợp với bất kỳ kết nối nào 00 hoặc 01, vì chúng có độ tự do cục bộtương ứng là 1 và 0 Ngược lại, không có dải nào trong một chuỗi F=1 có thể có chiềudài 3 hoặc dài hơn; vì điều này chỉ ra ba thành viên nhị phân được kết nối theo chuỗi,
và rõ ràng rằng khả năng di động của kết nối không thể được chứa trong một kết nốiduy nhất, mà không làm cho phần còn lại của kết nối trở nên cứng nhắc
+ Bước 4: Tập hợp các cấu trúc cơ cấu sau đó được sắp xếp theo trật tự như
trong Bảng 2.2, và tất cả các kết hợp và hoán vị có thể của các kết nối được liệt kê theocách hệ thống Phải chú ý rất cẩn thận để tránh sự trùng lặp phát sinh do bất kỳ đốixứng nào trong cấu trúc phân tử Hơn nữa, bất kỳ hoán vị nào dẫn đến các chuỗi cómột bậc tự do một phần (xem dưới đây) cũng phải được tránh
Trang 15Ví dụ: Theo quy trình trên đối với cơ cấu 7 khâu 2 bậc tự do, tìm được tổngcộng 4 biến thể kết quả của các trường hợp được thể hiện trong bảng sau:
Bảng 2.2: Chuỗi có 7 khâu liên kết, bậc tự do F=2
phân tử
Kết hợp của các khâu
Hoán đổi
Tổng cộng
1.2.2 1.1.3 0.2.3
1 1 1
Hình 2.10: Bốn chuỗi bảy khâu và bậc tự do F=2 (tương ứng với Bảng 2.2).
Trang 162.2 Phương pháp đánh giá tính di động của cấu trúc robot sử
dụng Fuzzy Entropy
2.2.1 Định nghĩa về Số Mờ trong cấu trúc kín
Các chuỗi cấu trúc kín được biểu diễn bằng một đồ thị, trong đó các khâu trởthành đỉnh và các khớp trở thành cạnh Hình vẽ dưới đây cho thấy một đồ thị tổngquan khi biểu diễn lại các chuỗi đó:
Hình 2.11: Lược đồ tổng quan chuỗi cấu trúc kín
Mức độ liên kết của một đỉnh (khâu) trong lược đồ trên được thể hiện bằng mộtCrisp number (Cn) có giá trị 0 hoặc 1 Giá trị 0 chỉ ra rằng một đỉnh (khâu) đang xétkhông có bất kỳ liên kết cùng hạng nào với các đỉnh (khâu) khác Trong khi giá trị 1chỉ ra một đỉnh (khâu) đó có liên kết cùng hạng với tất cả các đỉnh (khâu) còn lại, haycòn gọi là mức độ liên kết lý tưởng
Lưu ý rằng mức độ liên kết được đánh giá dựa trên các liên kết cùng hạng vớinhau Giả sử liên kết hạng 1 tương ứng với các liên kết trực tiếp giữa các đỉnh(khâu),liên kết hạng 2 tương ứng với các liên kết gián tiếp qua một đỉnh(khâu) bất kỳ, tương
tự đối với các liên kết hạng 3, 4, 5, N
Thực tế đối với một chuỗi cấu trúc kín, cả hai giá trị 0 và 1 không tồn tại, thayvào đó giá trị thực tế sẽ được gán bằng một giá trị trung gian nằm trong khoảng (0;1)
và gọi là Fuzzy number (Fn)
Tương ứng với đồ thị ở trên, ta có thể tính được giá trị trung gian đó bằng côngthức:
Nt
N −1=Fn (1)
- Nt: Số liên kết cùng hạng thực tế của một đỉnh(khâu) đang xét
- N: Tổng số đỉnh (khâu) trong cấu trúc đang xét