1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

Microelectronic Circuit Design Third Edition - Part III Solutions to Exercises doc

56 433 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 56
Dung lượng 6,11 MB

Nội dung

1 Microelectronic Circuit Design Third Edition - Part III Solutions to Exercises CHAPTER 10 Page 509 € V o = 2P o R L = 2 20W ( ) 16Ω ( ) = 25.3 V A v = V o V i = 25.3V 0.005V = 5.06x10 3 I o = V o R L = 25.3V 16Ω = 1.58 A I i = V i R S + R in = 0.005V 10kΩ + 20kΩ = 0.167 µ A A i = I o I i = 1.58 A 0.167 µ A = 9.48x10 6 A P = P o P S = 25.3V 1.58A ( ) 0.005V 0.167 µ A ( ) = 4.79x10 10 Checking : A p = 5.06x10 3 ( ) 9.48x10 6 ( ) = 4.80x10 10 Page 510 € i ( ) A vdB = 20 log 5060 ( ) = 74.1 dB A idB = 20 log 9.48x10 6 ( ) = 140 dB A PdB = 10 log 4.80x10 10 ( ) = 107 dB ii ( ) A vdB = 20 log 4x10 4 ( ) = 92.0 dB A idB = 20 log 2.75x10 8 ( ) = 169 dB A PdB = 10 log 1.10x10 13 ( ) = 130 dB Page 511 € i ( ) The constant slope region spanning a maximum input range is between 0.4 ≤ v I ≤ 0.65, and the bias voltage V I should be centered in this range : V I = 0.4 + 0.65 2 V = 0.525 V . v i ≤ 0.65 − 0.525 = 0.125 V and v i ≤ 0.525 − 0.40 = 0.125 V. For v I = 0.8V, the slope is 0. A v = 0. (ii) v O = V O + v o For v i = 0, v I = V I = 0.6, V O = 14V and A v = +40. V o = A v V i = 40 0.01V ( ) = 4V v O = 14.0 + 4.00sin1000 π t ( ) volts V O = 14 V 2 Page 519 € g 11 = 1 20kΩ + 76 50kΩ ( ) = 0.262 µ S g 21 = 0.262 µ S 76 ( ) 50kΩ ( ) = 0.995 g 22 = 1 50kΩ + 1 20kΩ + 75 20kΩ = 3.82 mS g 12 = − 1 g 22 20kΩ ( ) = − 1 3.82mS 20kΩ ( ) = -0.0131 R in = 1 g 11 = 3.82 MΩ A = g 21 = 0.995 R out = 1 g 22 = 262 Ω Page 520 € i ( ) P = A v A i = A v 2 R S + R in R L ii ( ) V o = 2 100W ( ) 8Ω ( ) = 40 V 40 = 0.001 50kΩ 5kΩ + 50kΩ       A 8Ω 0.5Ω + 8Ω       → A = 46,800 P = I o 2 R L 2 = 0.5Ω 2 40V 8Ω       2 = 6.25 W A i = 40V 8Ω       5kΩ + 50kΩ 0.001V       = 2.75 x 10 8 iii ( ) 40 = 0.001 5kΩ 5kΩ + 5kΩ       A 8Ω 8Ω + 8Ω       → A = 160,000 P = I o 2 R L 2 = 8Ω 2 40V 8Ω       2 = 100 W! A i = 40V 8Ω       5kΩ + 5kΩ 0.001V       = 5.00 x 10 7 Page 521 € A v s ( ) = 300s s + 5000 ( ) s +100 ( ) Zeros at s = 0 and s = ∞; Poles at s = -5000 and s = −100. Page 523 € A v s ( ) = − 2 π x 10 6 s + 5000 π = −400 1+ s 5000 π → A mid = −400 f H = 5000 π 2 π = 2.50 kHz BW = f H − f L = 2.50 kHz − 0 = 2.50 kHz GBW = 400 ( ) 2.50kHz ( ) = 1.00 MHz 3 Page 524 € i ( ) A v j5 ( ) = 50 5 2 − 4 5 2 − 2 ( ) 2 + 4 5 2 ( ) = 41.87 20 log 41.87 ( ) = 32.4 dB ∠A v j5 ( ) = ∠ 5 2 − 4 ( ) − tan −1 −2 5 ( ) 5 2 − 2         = 0 − −23.5 o ( ) = 23.5 o A v j1 ( ) = 50 1 2 − 4 1 2 − 2 ( ) 2 + 4 1 2 ( ) = 67.08 20 log 41.87 ( ) = 36.5 dB ∠A v j1 ( ) = ∠ 1 2 − 4 ( ) − tan −1 −2 1 ( ) 1 2 − 2         = 180 o − −63.43 o ( ) = 243 o = −117 o Page 524 € ii ( ) A v j ω ( ) = 20 1+ j 0.1 ω 1− ω 2 A v j0.95 ( ) = 20 1 2 + 0.1 ( ) 2 0.95 2 ( ) 1− 0.95 2 ( ) 2 = 14.3 ∠A v j0.95 ( ) = ∠20 − tan −1 0.1 0.95 ( ) 1− 0.95 2         = 0 − 44.3 o ( ) = −44.3 o A v j1 ( ) = 20 1 2 + 0.1 ( ) 2 1 2 ( ) 1−1 2 ( ) 2 = 0 ∠A v j1 ( ) = ∠20 − tan −1 0.1 1 ( ) 1−1 2         = 0 − 90 o ( ) = −90.0 o A v j1.1 ( ) = 20 1 2 + 0.1 ( ) 2 1.1 2 ( ) 1−1.1 2 ( ) 2 = 17.7 ∠A v j1.1 ( ) = ∠20 − tan −1 0.1 1.1 ( ) 1−1.1 2         = 0 − −27.6 o ( ) = 27.6 o Page 526 € f H = 1 2 π 1 1kΩ 100kΩ ( ) 200 pF ( ) = 804 kHz Page 527 € A v s ( ) = 250 1+ 250 π s A o = 250 f L = 250 π 2 π = 125 Hz f H = ∞ BW = ∞ −125 = ∞ 4 Page 528 € f L = 1 2 π 1 1kΩ 100kΩ ( ) 0.1 µ F ( ) = 15.8 Hz Page 529 € i ( ) A v s ( ) = −400 1+ 100 s       1+ s 50000       A o = 400 or 52 dB f L = 100 2 π = 15.9 Hz f H = 50000 2 π = 7.96 kHz BW = 7960 −15.9 = 7.94 kHz ii ( ) ∠A v j0 ( ) = −90 − 0 − 0 = −90 o ∠A v j100 ( ) = −90 o − tan −1 100 100       − tan −1 100 50000       = −90 − 45 − 0.57 = −136 o ∠A v j50000 ( ) = −90 o − tan −1 50000 100       − tan −1 50000 50000       = −90 − 89.9 − 45 = −225 o ∠A v j∞ ( ) = −90 − 90 − 90 = −270 o Page 531 € The numerator coefficient should be 6 x10 6 . A v s ( ) = 30 2x10 5 s s 2 + 2x10 5 s +10 14 A o = 30 f o = 1 2 π 10 14 = 1.59 MHz Q = 10 7 2x10 5 = 50 BW = 1.59 MHz 50 = 31.8 kHz Page 533 € The transfer fucntion should be A v s ( ) = 6.4x10 12 π 2 s s + 200 π ( ) s + 80000 π ( ) 2 . A v s ( ) = 1000 1+ 200 π s       1+ s 80000 π       2 A o = 1000 or 60 dB f L = 200 π 2 π = 100 Hz f H = 0.644 80000 π 2 π       = 25.8 kHz BW = 25800 −100 = 25.7 kHz 5 CHAPTER 11 Page 545 € v id = 10V 100 = 0.100V =100 mV v id = 10V 10 4 = 0.001 V = 1.00 mV v id = 10V 10 6 = 1.00x10 −5 V = 10.0 µ V Page 547 € A v = − 360kΩ 68kΩ = −5.29 v O = −5.29 0.5V ( ) = −2.65 V i S = 0.5V 68kΩ = 7.35 µ A i O = −i 2 = −i S = −7.35 µ A Page 549 € I S = 2V 4.7kΩ = 426 µ A I 2 = I S = 426 µ A A v = − 24kΩ 4.7kΩ = −5.11 V O = −5.11 2V ( ) = −10.2 V Page 551 € A v = 1+ 36kΩ 2kΩ = +19.0 v O = 19.0 −0.2V ( ) = − 3.80 V i O = −3.80V 36kΩ + 2kΩ = −100 µ A Page 552 € i ( ) A v = 1+ 39kΩ 1kΩ = +40.0 A vdB = 20log 40.0 ( ) = 32.0 dB R in = 100kΩ ∞ =100kΩ v O = 40.0 0.25V ( ) = 10.0 V i O = 10.0V 39kΩ + 1kΩ = 250 µ A ii ( ) A v = 10 54 20 = 501 1+ R 2 R 1 = 501 R 2 R 1 = 500 i O = v O R 2 + R 1 10 R 2 + R 1 ≤ 0.1 mA R 1 + R 2 ≥ 100kΩ 501R 1 ≥ 100kΩ → R 1 ≥ 200 Ω There are many possibilities. (R 1 = 200 Ω, R 2 = 100 kΩ ), but ( R 1 = 220 Ω, R 2 = 110 kΩ ) is a better solution since resistor tolerances could cause i O to exceed 0.1 mA in the first case. Page 554 € Inverting Amplifier : A v = − 30kΩ 1.5kΩ = −20.0 R in = R 1 = 1.5 kΩ v O = −20.0 0.15V ( ) = −3.00 V i O = v O R 2 = −3.00V 30kΩ = −100 µ A Non - Inverting Amplifier : A v = 1+ 30kΩ 1.5kΩ = +21.0 R in = v S i S = 0.15V 0 A = ∞ v O = 21.0 0.15V ( ) = 3.15 V i O = v O R 2 + R 1 = 3.15V 30kΩ + 1.5kΩ = 100 µ A 6 Page 555 € V o1 = 2V − 3kΩ 1kΩ       = −6V V o2 = 4V − 3kΩ 2kΩ       = −6V v O = −6sin1000 π t − 6sin 2000 π t ( ) V The summing junction is a virtual ground : R in1 = v 1 i 1 = R 1 = 1 kΩ R in2 = v 2 i 2 = R 2 = 2 kΩ I o1 = V o1 R 3 = −6V 3kΩ = −2mA I o2 = V o2 R 3 = −6V 3kΩ = −2mA i O = −2sin1000 π t − 2sin2000 π t ( ) mA Page 559 € i ( ) I 2 = 3V 10kΩ + 100kΩ = 27.3 µ A ii ( ) A v = − 100kΩ 10kΩ = −10.0 V O = −10 3V − 5V ( ) = 20.0 V I O = V O − V − 100kΩ = V O − V + 100kΩ V + = V 2 R 4 R 3 + R 4 = 5 100kΩ 10kΩ + 100kΩ = 4.545V I O = 20.0 − 4.545 100kΩ = 155 µ A I 2 = 5V 10kΩ + 100kΩ = 45.5 µ A iii ( ) A v = − 36kΩ 2kΩ = −18.0 V O = −18 8V − 8.25V ( ) = 4.50 V I O = V O − V − 36kΩ = V O − V + 36kΩ V + = V 2 R 2 R 1 + R 2 = 8.25 36kΩ 2kΩ + 36kΩ = 7.816V I O = 4.50 − 7.816 36kΩ = −92.1 µ A Page 560 € I = V A −V B 2R 1 = 5.001V − 4.999V 2kΩ = 1.00 µ A V A = V 1 + IR 2 = 5.001V +1.00 µ A 49kΩ ( ) = 5.05 V V B = V 2 − IR 2 = 4.999V −1.00 µ A 49kΩ ( ) = 4.95 V V O = − R 4 R 3       V A −V B ( ) = − 10kΩ 10kΩ       5.05 − 4.95 ( ) = −0.100 V Page 564 € i ( ) A v = − R 2 R 1 = −10 26 20 = −20.0 R 1 = R in = 10kΩ R 2 = 20R 1 = 200kΩ C = 1 2 π 3kHz ( ) 200kΩ ( ) = 265 pF Closest values : R 1 = 10kΩ R 2 = 200kΩ C = 270 pF 7 Page 564 € ii ( ) R in = R 1 = 10 kΩ ΔV = − I C ΔT C = 5V 10kΩ 1 10V       1ms ( ) = 0.05 µ F t (msec) v O 2 4 6 8 -10V Page 567 € v O = −RC dv S dt = − 20kΩ ( ) 0.02 µ F ( ) 2.50V ( ) 2000 π ( ) cos2000 π t ( ) = −6.28cos2000 π t V Page 569 € i ( ) A vA = A vB = A vC = − R 2 R 1 = − 68kΩ 2.7kΩ = −25.2 R inA = R inB = R inC = R 1 = 2.7 kΩ The op - amps are ideal : R outA = R outB = R outC = 0 ii ( ) A v = A vA A vB A vC = −25.2 ( ) 3 = −16,000 R in = R inA = 2.7 kΩ R out = R outC = 0 Page 570 € A v = −25.2 ( ) 3 2.7kΩ R out + 2.7kΩ       2 ≥ 0.99 25.2 ( ) 3 2.7kΩ R out + 2.7kΩ       2 ≥ 0.99 2.7kΩ R out + 2.7kΩ ≥ 0.9950 R out ≥13.6 Ω Page 574 € i ( ) A v 0 ( ) = +1 A v s ( ) = ω o 2 s 2 + s 2 ω o + ω o 2 A v j ω ( ) = ω o 2 j ω 2 ω o + ω o 2 − ω 2 A v j ω H ( ) = 1 2 → ω o 2 ω o 2 − ω H 2 ( ) 2 + 2 ω H 2 ω o 2 = 1 2 → 2 ω o 4 = ω o 4 + ω H 4 → ω o = ω H ii ( ) 1 2 = C 1 C 2 R 2 2R → C 1 = 2C 2 → C 2 = 1 2 2.26kΩ ( ) 20000 π ( ) = 4.98nF C 2 = 0.005 µ F C 1 = 0.01 µ F 8 Page 574 € iii ( ) To decrease the cutoff frequency from 5kHz to 2 kHz, we must increase the resistances by a factor of 5kHz 2kHz = 2.50 → R 1 = R 2 = 2.50 2.26kΩ ( ) = 5.65 kΩ iv ( ) 1 2 = C C R 1 R 2 R 1 + R 2 → R 1 2 + 2R 1 R 2 + R 2 2 = 2R 1 R 2 → R 1 2 = −R 2 2 - - can't be done! Q = R 1 R 2 R 1 + R 2 dQ dR 2 = 1 R 1 + R 2 ( ) 2 R 1 R 1 + R 2 ( ) 2 R 1 R 2 − R 1 R 2         = 0 → R 2 = R 1 → Q max = 1 2 Page 575 € S C 1 Q = C 1 Q dQ dC 1 = C 1 Q 1 2 C 1 C 2 R 1 R 2 R 1 + R 2         = C 1 Q Q 2C 1 = 0.5 S R 2 Q = R 2 Q dQ dR 2 R 1 = R 2 → Q = 1 2 C 1 C 2 → S R 2 Q = 0 Page 577 € i ( ) A v j ω o ( ) = K − ω o 2 − ω o 2 + j 3 − K ( ) ω o 2 + ω o 2 = K 3 − K A v j ω o ( ) = K 3 − K ∠90 o ii ( ) f o = 1 2 π 10kΩ 20kΩ ( ) 0.0047 µ F ( ) 0.001 µ F ( ) = 5.19 kHz Q = 10kΩ 20kΩ 4.7nF +1.0nF 4.7nF 1.0nF ( ) + 1− 2 ( ) 20kΩ 1.0nF ( ) 10kΩ 4.7nF ( )         −1 = 0.829 iii ( ) S K Q = K Q dQ dK Q = 1 3 − K dQ dK = −1 3 − K ( ) 2 −1 ( ) = Q 2 S K Q = K Q dQ dK = KQ Q = 1 3 − K → KQ = 3Q −1 S K Q = 3Q −1 =1.12 Page 578 € R th = 2kΩ 2kΩ =1kΩ f o = 1 2 π 1kΩ 82kΩ ( ) 0.02 µ F ( ) 0.02 µ F ( ) = 879 Hz Q = 1 2 82kΩ 1kΩ = 4.53 9 Page 582 € ii ( ) A BP j ω o ( ) = KQ = R 2 R 1 10 = 294kΩ R 1 → R 1 = 29.4 kΩ iii ( ) f o = 1 2 π RC = 1 2 π 40.2kΩ ( ) 2nF ( ) = 1.98 kHz BW = 1 2 π R 2 C = 1 2 π 402kΩ ( ) 2nF ( ) = 198 Hz A BP j ω o ( ) = − R 2 R 1 = − 402kΩ 20.0kΩ = −20.1 iv ( ) Blindly using the equations at the top of page 580 yields f o min = 1 2 π RC = 1 2 π 1.01 ( ) 29.4kΩ ( ) 1.02 ( ) 2.7nF ( ) = 1946 Hz f o max = 1 2 π RC = 1 2 π 0.99 ( ) 29.4kΩ ( ) 0.98 ( ) 2.7nF ( ) = 2067 Hz BW min = 1 2 π R 2 C = 1 2 π 1.01 ( ) 294kΩ ( ) 1.02 ( ) 2.7nF ( ) = 195 Hz BW max = 1 2 π R 2 C = 1 2 π 0.99 ( ) 294kΩ ( ) 0.98 ( ) 2.7nF ( ) = 207 Hz A BP min = − R 2 R 1 = − 294kΩ 1.01 ( ) 14.7kΩ 0.99 ( ) = −20.4 A BP max = − R 2 R 1 = − 294kΩ 0.99 ( ) 14.7kΩ 1.01 ( ) = −19.6 The W/C results are similar if R and C are not the same for example where ω o = 1 R A R B C A C B . Page 583 € i ( ) - a ( ) R 1 = R 2 = 5 2.26kΩ ( ) = 11.3 kΩ C 1 = 0.02 µ F 5 = 0.004 µ F C 2 = 0.01 µ F 5 = 0.002 µ F f o = 1 2 π 11.3kΩ ( ) 11.3kΩ ( ) 0.004 µ F ( ) 0.002 µ F ( ) = 4980 Hz Q = 11.3kΩ 11.3kΩ 0.004 µ F ( ) 0.002 µ F ( ) 0.004 µ F + 0.002 µ F = 0.471 b ( ) R 1 = R 2 = 0.885 2.26kΩ ( ) = 2.00 kΩ C 1 = 0.02 µ F 0.885 = 0.0226 µ F C 2 = 0.01 µ F 0.885 = 0.0113 µ F f o = 1 2 π 2.00kΩ ( ) 2.00kΩ ( ) 0.0226 µ F ( ) 0.0113 µ F ( ) = 4980 Hz Q = 2.00kΩ 2.00kΩ 0.0226 µ F ( ) 0.0113 µ F ( ) 0.0226 µ F + 0.0113 µ F = 0.471 10 Page 583 € ii ( ) f o = 1 2 π 1kΩ ( ) 82kΩ ( ) 0.02 µ F ( ) 0.02 µ F ( ) = 879 Hz Q = 82kΩ 1kΩ 0.02 µ F ( ) 0.02 µ F ( ) 0.02 µ F + 0.02 µ F = 4.53 The values of the resistors are unchanged. C 1 = C 2 = 0.02 µ F 4 = 0.005 µ F f o = 1 2 π 1kΩ ( ) 82kΩ ( ) 0.005 µ F ( ) 0.005 µ F ( ) = 3520 Hz Q = 82kΩ 1kΩ 0.005 µ F ( ) 0.005 µ F ( ) 0.005 µ F + 0.005 µ F = 4.53 Page 585 € The diode will conduct and pull the output up to v O = v S = 1.0 V. v 1 = v O + v D = 1.0 + 0.6 =1.6 V For a negative input, there is no path for current through R, so v O = 0 V . The op - amp sees a -1V input so the output will limit at the negative power supply : v O = −10 V . The diode has a 10 - V reverse bias across it, so V Z > 10 V . Page 587 € i ( ) v S = 2 V : Diode D 1 conducts, and D 2 is off. The negative input is a virtual ground. v 1 = −v D2 = −0.6 V . The current in R is 0, so v O = 0 V . v S = −2 V : Diode D 2 conducts, and D 1 is off. The negative input is a virtual ground. v O = − R 2 R 1 v S = − 68kΩ 22kΩ −2V ( ) = +6.18 V v 1 = v O + v D1 = 6.78 V . v S = 15V −3.09 = −4.85 V v 1 = v O + v D1 = 6.78 V . When v O = 15 V , v D2 = -15.6 V , so V Z = 15.6 V . ii ( ) v O = 20kΩ 20kΩ 10.2kΩ 3.24kΩ       2V π = 2.00 V Page 589 € V − = − R 1 R 1 + R 2 V EE = − 1kΩ 1kΩ + 9.1kΩ 10V = −0.990 V V + = 1kΩ 1kΩ + 9.1kΩ 10V = +0.990 V V n = 0.990V − −0.990V ( ) = 1.98 V Page 591 € T = 2 10kΩ ( ) 0.001 µ F ( ) ln 1+ 0.5 1− 0.5       = 21.97 µ s f = 1 T = 45.5 kHz [...]... At the Q - point : β F = (c) Rin = v be 8mV = = 1.6 kΩ ib 5µA IC 1.5mA = = 100 I B 15µA (b) I S = IC 1.5mA = = 1.04 fA  VBE   0.700V  exp  exp   0.025V   VT  (d) With the given applied signal, the smallest value of vCE is min v CE = 5V − 0.5mA(3.3kΩ) = 3.35 V which exceeds v BE = 0.708 V (ii ) (a) v DS = 10 − 3300iDS (b) Using the peak - to - peak voltage swings, Av = vds 2.7 - 6.7 V =... to - peak voltage swings, Av = vds 2.7 - 6.7 V = = −4.0 vgs 4.0 - 3.0 V Note that there is some distortion in this amplifier since the negative output voltage excursion is larger than the positive output change (c) v min = 2.7V with vGS − VTN = 4 −1 = 3V , so the transistor has entered the triode region DS (d) Choose two points on the i - v characteristics For example, 2 2 Kn (3.5 − VTN ) and 1.0mA... t+ t = 15V → t = 6.00 ms 10kΩ(100 pF ) 100 pF Page 636 € Values taken from op - amp specification sheets (www.jaegerblalock.com or www.analog.com) Page 637 € Values taken from op - amp specification sheets (www.jaegerblalock.com or www.analog.com) € 14 Page 638 −1  1 1  REQ R1 + R2 ≥  −  = 20kΩ  4kΩ 5kΩ  Including 5% tolerances, R1 + R2 ≥ 21kΩ A v = 10 → R2 = 9R1 20V = RL ( R2 + R1 ) ≥ = 4kΩ 5mA... CHAPTER 12 Page 612 1 (i ) Aideal = β = 100 A 105 Av = = = 99.90 1+ Aβ 1+ 105 (0.01) vo 9.99V = = 99.9 µV A 105 (ii ) Values taken from OP - 27 specification sheet (www.jaegerblalock.com or www.analog.com) vo = 99.9(0.1V ) = 9.99 V vid = (iii ) Values taken from OP - 27 specification sheet € Page 613 Av = −R2 Aβ R1 1+ Aβ  −R   −R Aβ  2 2   −  R1   R1 1+ Aβ  Aβ 1  FGE = = 1− =  −R  1+ Aβ...  5x10 − 5  = 2.5x10 4 or 88 dB 10   Page 630 € Values taken from op - amp specification sheets (www.jaegerblalock.com or www.analog.com) Page 631 € (i ) V ≤ 50(0.002V ) → −0.100 V ≤ V ≤ +0.100 V (ii ) Values taken from op - amp specification sheets (www.jaegerblalock.com O O or www.analog.com) Page 633 € Values taken from op - amp specification sheets (www.jaegerblalock.com or www.analog.com) Page...   6.37kΩ in AvCE = −g m RL  = -9 .56mS 9.57kΩ 220kΩ   = −83.4 CE  0.33kΩ + 6.37kΩ   RI + Rin  ( ) € 21 Page 730 (i) The gain is proportional to RL  25.9kΩ  AvCS = −6.85  = −6.50  27.3kΩ  The corrected gain agrees more closely with thevalue from SPICE CS RL = 300kΩ Rout = 300kΩ 28.4kΩ = 25.9kΩ (ii ) µ f = g mro = 0.515mS (258kΩ) = 133  RCS   1 in iii ) v gs = v i v gs ≤ 0.2(VGS −... 3.6kΩ = 69.1 Ω gm 0.0142 CD Rout = 3.6kΩ € D L 1 1 + VDS + 5 + 2.21 iii ) ro = λ = 0.015 = 14.8kΩ ( ID 0.005 (iv ) GS RS = 3600Ω AvCD = 0.981 Rin = RG = 22 MΩ AvCD = A 3000Ω = 0.959 69.1Ω + 3000Ω Page 805 (i ) Reverse the direction of the arrow on the ermitter of the transistor as well as the values of VEE and VCC CD out (ii ) R = RE (iii ) For v CB 1 1 = 13kΩ = 75.1 Ω gm 40(331µA) CB AV = 75.1Ω (13.2mS... VCE = 15 −1.96mA 3.3kΩ = 8.45 V 51.8kΩ + 81(3.3kΩ)  80  Q3 : VEQ = 80 60 + 8.45 = 1.02 kΩ ro = = 34.9 kΩ 78.4mS 1.96mA (ii) A typical op - amp gain is at least 10,000 which exceeds the amplification factor g m = 40(1.96mA) = 78.4 mS rπ = of a single transistor € Page 815 (i ) RL1 = 478Ω 12.2kΩ = 460Ω RL2 = 3.53kΩ 54.2kΩ = 3.31kΩ  79.6mS (230Ω)   1MΩ  Av = −10mS (460Ω)(−62.8mS )(3.31kΩ) ... kΩ IC 250µA (iii ) € βF I 1.5mA = βF = C = = 100 VCE I B 15µA 1+ VA ΔiC 500µA = = 100 ΔiB 5µA rπ = 18 µ f = g mro = 10mS (360kΩ) = 3600 gm = ΔiC 0.5mA = = 62.5 mS ΔvBE 8mV βo 100 = = 1.60 kΩ g m 62.5mS Page 692 Avt = −g m RL = −9.80mS (18kΩ) = −176 € βo 50 = = 5.00 kΩ g m 10mS The slope of the output characteristics is zero, so VA = ∞ and ro = ∞ β FO = βo = rπ = Page 695 Assume the Q - point remains... 0.491mS (1kΩ)  2kΩ + 892kΩ  (iii ) R4 = 13kΩ −1kΩ = 12 kΩ RiB = 10.2kΩ  104kΩ 10.2kΩ   A = −9.80mS (18kΩ)  2kΩ + 104kΩ 10.2kΩ  = −145    892kΩ  AvCS = −0.491mS (18kΩ)  = −8.82  2kΩ + 892kΩ   1.38x10−23 V  IC 245µA iv ) VT =  = = 0.421 fA (273K + 27K ) = 25.84mV I S = ( −19  VBE   0.700V   1.602x10 K  exp  exp   0.02584V   VT  18kΩ (v ) gm RL = -9 .80mS(18kΩ) = −176, AvCE . 1 Microelectronic Circuit Design Third Edition - Part III Solutions to Exercises CHAPTER 10 Page 509 € V o = 2P o R L = 2 20W (. (a) v DS = 10 − 3300i DS (b) Using the peak - to - peak voltage swings, A v = v ds v gs = 2.7 - 6.7 4.0 - 3.0 V V = −4.0. Note that there is some distortion in this amplifier since the negative. 4.98nF C 2 = 0.005 µ F C 1 = 0.01 µ F 8 Page 574 € iii ( ) To decrease the cutoff frequency from 5kHz to 2 kHz, we must increase the resistances by a factor of 5kHz 2kHz = 2.50 → R 1 = R 2 = 2.50

Ngày đăng: 29/06/2014, 01:20

TỪ KHÓA LIÊN QUAN