NHIEM VU VA NOI DUNG: - Phan tích một số thành phan dinh dưỡng trong trái thanh long ruột đỏ Bình Thuận - Khao sát và tối ưu hóa quá trình thủy phân với các yếu t6 tý lệ pha loãng, pH, t
DANH MUC TAI LIEU THAM KHAO
Wikipedia Bach khoa toàn thư mo “Thanh long (thực vat),” Internet: https://vi.wikipedia.org/wiki/Thanh long (th%oEI%oBB%BIc v%EI%BA%
Wikipedia The Free Encyclopedia “Hylocereus,” Internet: https://en wikipedia.org/wiki/Hylocereus, Dec 30, 2016.
Vietnam+ “Lai tạo thành công giống thanh long có ruột tím hồng.” Internet: http://khoahoc.tv/lai-tao-thanh-cong-giong-thanh-long-co-ruot-tim-hong- 47462, Jul 02, 2013.
S R Nurul and R Asmah, “Variability in nutritional composition and phytochemical properties of red pitaya (Hylocereus polyrhizus) from Malaysia and Australia,” International Food Research Journal, vol 21, no 4 pp 1689—
1697, 2014. Đoàn Minh Vương và cộng su, “Phân tích chuỗi giá trị thanh long tai huyện Chợ Gạo tỉnh Tiền Giang,” Tap chí khoa hoc Trường Đại học Cần Thơ, vol.
Tổng cục thống Kê, Nién giám thong kê năm 2013 Hà Nội: Nhà xuất bản Thống Kê, 2013.
Diego A Moreno et al, “Betalains in the era of global agri-food science, technology and nutritional health,” Phytochemistry, vol 7, pp 261-280, 2008.
Wikipedia The Free Encyclopedia “Betalain,” Internet: https://en wikipedia.org/wiki/Betalain, Nov 29, 2016.
Henriette M C Azeredo, “Betalains properties, source, applications and stability - a review,” /nternational Journal of Food Science and Technology, vol 44, pp 2365-2376, 2009.
[10] Magdolna Nagy Gasztonyi et al, “Comparison of red beet (Beta vulgaris var
[19] conditiva) varieties on the basis of their pigment components,” Journal of the Science of Food and Agriculture, vol 81, no 9, pp 932—933, 2001.
Dieter Strack et al, “Recent advances in betalain research,” Phytochemistry, vol 6, pp 247-269, 2003.
Florian C Stintzing et al, “Betacyanins in fruits from red-purple pitaya, Hylocereus polyrhizus (Weber) Britton & Rose,” Food Chemistry, vol 77, no.
Pubchem Open Chemistry Database, “Leucodopachrome,” Internet: https://pubchem.ncbi.nlm.nih.gov/compound/161255#section=Top, Dec 24, 2016.
J H Huang et al, “Kinetics of the degradation and regeneration of betanine,”
M Drdák, M Vallova, “Kinetics of the thermal degradation of betanine,”
J Kanner et al, “Betalains-a new class of dietary cationized antioxidants,”
Journal of Agricultural and Food Chemistry, vol 49, no 11, pp 5178-5185, 2001.
Yizhong Cai et al, “Antioxidant Activity of Betalains from Plants of the Amaranthaceae,” Journal of Agricultural and Food Chemistry, vol 51, pp.
Daniela Butera et al, “Antioxidant Activities of Sicilian Prickly Pear (Opuntia ficus indica) Fruit Extracts and Reducing Properties of Its Betalains Betanin and Indicaxanthin,” Journal of Agricultural and Food Chemistry, vol 50, pp.
L Tesoriere et al, “Increased resistance to oxidation of betalain-enriched human low density lipoproteins,” Free Radic Res., vol 37, no 6, pp 689-696,2003.
L Tesoriere et al, “Supplementation with cactus pear (Opuntia ficus-indica) fruit decreases oxidative stress in healthy humans: a comparative study with vitamin C,” The American Journal of Clinical Nutrition, vol 80, no 2, pp 391—
Y Sakihama et al, “Beetroot betalain inhibits peroxynitrite-mediated tyrosine nitration and DNA strand cleavage,” Free Radical Research, vol 46, no 1, pp.
R L Jackman, J L Smith, “Anthocyanins and betalains,” in Natural Food Colorants, 1996, pp 244-309.
Lé Van Viét Man, Cong nghé san xuất rượu Vang Hồ Chí Minh: NXB Đại học Quốc Gia TP.HCM 2011.
Nguyen Phuoc Minh, “Various Factors Influencing to Red Dragon Fruit (Hylocereus polyrhizus) Wine Fermentation,” Jnternational Journal of Multidisciplinary Research and Development, vol 1, no 15 pp 94—98, 2014.
Microbiology Online, “Fungi,” Microbiology Society, 2016 [Online].
Available: http://www.microbiologyonline.org.uk/about- microbiology/introducing-microbes/fungi.
International Organisation of Vine and Wine (OIV), Compendium of international methods of wine and must analysis Paris, 2015.
Nguyễn Nhat Minh Phương và cộng su, “Tác động enzyme pectinase đến khả năng trích ly dịch qua và các điều kiện lên men đến chất lượng rượu vang xoài sau thời gian lên men chính,” Tap chí khoa học pp 127—136, 2011.
F Fratianni et al, “Fermentation of tomato juice with the probiotic yeast Saccharomyces cerevisiae boulardii,” Journal of Functional Foods, pp 143—
Dam Thi Ha va cộng sự, “Nghiên cứu quy trình sản xuất nước thanh long lên men từ thanh long phụ phẩm bang Saccharomyces cerevisiae,” in Hội nghị
Công Nghệ Sinh Học Toàn Quốc Khu Vực Phía Nam Lan III, 2013.
Lê Thị Kiều Oanh, “Nghiên cứu sử dụng trái thanh long (/1ylocereus undatus) để chế biến nước uống lên men,” Đại học Sư Phạm, TP Hỗ Chí Minh, 2005.
Nguyễn Đức Luong, Phan Thị Huyền, Nguyễn Ánh Tuyết, Thi nghiệm công nghệ sinh học, Tap 2- Thi nghiệm vi sinh vat học Hỗ Chí Minh: NXB Đại học Quốc Gia TP.HCM 2003.
Curtis Phillips, “Product Review: Enological enzymes: A winemaking tool for extraction, settling and clarification,’ Wine Business Monthly, vol 16, no 7, p.
Nguyễn Đức Luong và cộng sự, Công nghệ enzyme Hồ Chí Minh: NXB Dai học Quốc Gia TP.HCM, 2004.
A R Nur “Aliaa et al, “Effects of commercial pectinases application on selected properties of red pitaya juice,” Journal of Food Process Engineering, vol 34, no 5, pp 1523-1534, 2011.
S Kaur et al, “Optimization of Enzymatic Hydrolysis Pretreatment Conditions for Enhanced Juice Recovery from Guava Fruit Using Response Surface Methodology,” Food Bioprocess Technology, vol 2, pp 96-100, 2009.
Samantha Lemke Gonzalez , Neiva Deliberali Rosso, “Determination of pectin methylesterase activity in commercial pectinases and study of the inactivation kinetics through two potentiometric procedures,” Ciéncia e Tecnologia de Alimentos, vol 31, no 2, pp 412-417, 2011.
Robert A Baker, Joseph H Bruemmer, “Pectinase stabilization of orange juice cloud,” Journal of Agricultural and Food Chemistry, vol 20, no 6, pp 1169—
Munish Puri et al, “Enzyme-assisted extraction of bioactives from plants,”
Trends in Biotechnology, vol 30, no 1, pp 37-44, 2012.
Changmou Xu et al, “Enzyme release of phenolics from muscadine grape (Vitis rotundifolia Michx.) skins and seeds,” Food Chemistry, vol 157, pp 20-29, 2014.
Dietmar Kammerer et al, “A novel process for the recovery of polyphenols from grape (Vitis vinifera L.) pomace,” Journal of Food Science, vol 70, no.
Hassan K Sreenath et al, “Improvement of juice recovery from pineapple pulp/residue using cellulase and pectinase,” Journal of Fermentation and Bioengineering, vol 78, no 6, pp 486—488, 2013. Đàm Sao Mai, Trần Thi Thanh Thuy, Tran Minh Tam, “Khao sat anh hưởng của một số chủng nắm men trong sản xuất vang thanh long,” Zap chi Khoa học và Phát triển, vol 7, no 4, pp 500-506, 2009.
O Jayasinghe et al, “Production of a Novel Fruit-Yoghurt Using Dragon Fruit ( Hylocereus Undatus L.),” European Scientific Journal, vol 11, no 3 pp.
Liana Adnan et al, “Antioxidant Activity of Different Extracts of Red Pitaya (Hylocereus polyrhizus) Seed,” International Journal of Food Properties, vol.
Mold Adzim Khalili Rohin et al, “Antibacterial activity of flesh and peel methanol fractions of red pitaya, white pitaya and papaya on selected food microorganisms,” /nternational Journal of Pharmacy and Pharmaceutical Sciences, vol 4, pp 185-190, 2012.
Nguyễn Dinh Thưởng, Nguyễn Thanh Hang, Công nghệ sản xuất và kiểm tra côn etylic Hà Nội: NXB Khoa Học và Kỹ Thuật, 2007.
Ruzainah Ali Jaafar et al, “Proximate Analysis of Dragon Fruit (Hylocerews polyrhizus),” American Journal of Applied Sciences, vol 6, no 7, pp 1341—
W M Chemah et al, “Determination of pitaya seeds as a natural antioxidant and source of essential fatty acids,” International Food Research Journal, vol.
Aneta Wojdylo et al, “Antioxidant activity and phenolic compounds in 32 selected herbs,” Food Chemistry, vol 105, pp 940-949, 2007.
Lesley E Smart, Elaine A Moore, Solid state chemistry: an introduction, Third Edit CRC Press, 2012.
O R Bancuta et al, “Improvement of spectrophotometric method for determination of phenolic compounds by statistical investigations,” Romanian Journal of Physics, 2016.
O P S Rebecca et al, “Pigment identification and antioxidant properties of red dragon fruit (Hylocereus polyrhizus),” African Journal of Biotechnology, vol.
Delia-Gabriela Dumbrava et al, “Antioxidant activity of some fresh vegetables and fruits juices,” Journal of Agroalimentary Processes and Technologies, vol.
Nguyễn Cảnh, Quy hoạch thực nghiệm Hồ Chi Minh: NXB Đại học Quốc Gia
5 K Reshmi et al, “The effect of light, temperature, pH on satability of betacyanin pigments in basella alba fruit,” Asian Journal of Pharmaceutical and Clinical Research, vol 5, no 4 pp 5—8, 2012.
T B Dey and R Banerjee, “Application of decolourized and partially purified polygalacturonase and alpha amylase in apple juice clarification,” Brazilian Journal of Microbiology, vol 45, no 1, pp 97-104, 2014.
Lei Liu et al, “Complex enzyme hydrolysis releases antioxidative phenolics from rice bran,” Food Chemistry, vol 214, pp 1-8, 2017.
A S Huang, and J H von Elbe, “Effect of pH on the degradation and regeneration of betanine,” Journal of Food Science, vol 52, pp 1689-1693,
Anna Ratz- Lyko et al, “Effect of Enzymatic Hydrolysis on the Antioxidant Properties of Alcoholic Extracts of Oilseed Cakes,” Food Technology and Biotechnology , vol 51, no 4 pp 539-546, 2013.
J Y Ko et al, “Enhanced Production of Phenolic Compounds from Pumpkin Leaves by Subcritical Water Hydrolysis,” Preventive Nutrition and Food Science, vol 21, no 2, pp 132—137, 2016.
J R Morris et al, “Fermentations Problems, Solutions and Prevention,” Les Entretiens Scientifiques Lallemand, pp 89-92, 1995.
Huseyin Erten et al, “The influence of inoculum level on fermentation and flavour compounds of white wines made from cv Emir,” Journal of the Institute of Brewing, vol 112, no 3 pp 232—236, 2006.
A Oji et al, “Batch fermentation of pawpaw juice into wine using palm wine yeast,” Journal of Scientific and Engineering Research, vol 3, no 3, pp L72—
M.A Gomez Gallego et al, “Effect of oak chip addition at different winemaking stages on phenolic composition of Moravia Agria red wines,”
South African Society for Enology Viticulture, vol 36, no 1, 2015.
Ante Loncaric et al, “Effects of Sugar Addition on Total Polyphenol Content and Antioxidant Activity of Frozen and Freeze-Dried Apple Purée,” Journal of Agricultural and Food Chemistry, vol 62, pp 1674-1682, 2014.
I Scibisz and M Mitek, “Effect of Processing and Storage Conditions on
Phenolic Compounds and Antioxidant Capacity of Highbush Blueberry Jams,”
Polish Journal of Food and Nutrition Sciences, vol 59, no 1 pp 45—52, 2009.
K Katina et al., “Fermentation-induced changes in the nutritional value of
[71] native or germinated rye,” Journal of Cereal Science, vol 46, no 3 pp 348—
Patrizia Romano et al, “Taxonomic and Ecological Diversity of Food and Beverage Yeasts,” in The Yeast Handbook Volume 2: Yeasts in Food and Beverages, Dr Sabine Schreck, Heidelberg, Ed Germany: SPI Publisher Services, pp 13-53.
A Contrerasa et al, “Evaluation of Non-Saccharomyces Yeasts for the Reduction of Alcohol Content in Wine,” Applied and Environmental Microbiology, vol 80, no 5, pp 1670-1678, 2013.
V Katalinic et al, “Antioxidant effectiveness of selected wines in comparison with (+)-catechin,” Food Chemistry, vol 86, pp 593-600, 2004.
Edwin N Frankel et al, “Principal phenolic phytochemicals in selected California wines and their antioxidant activity in inhibiting oxidation of human low-density lipoproteins,” Journal of Agricultural and Food Chemistry, vol.
A Xây dung đường chuẩn A.1 Đường chuẩn Hàm lượng phenolic tổng và độ hấp thu
Simple Regression — Do hap thu A vs Nong do acid gallic
Dependent variable: Do hap thu A Independent variable: Nong do acid gallic (mg/L) Linear model: Y = a + b*X
Least Squares | Standard T Parameter| Estimate Error Statistic | P-Value Intercept |0,0994211 0,00698095 {14,241810,0000 Slope 0,00359774 |0,0000461945 | 77,8825 |0,0000 Analysis of Variance
Source Sum of Squares | Df| Mean Square | F-Ratio | P-Value Model 1,74304 1 |1,74304 6065,68 | 0,0000 Residual 0,00632 194 22|0,000287361
Total (Corr.)| 1,74936 23 Correlation Coefficient = 0,998191 R-squared = 99,6386 percent The output shows the results of fitting a linear model to describe the relationship between A and Nong do acid gallic, The equation of the fitted model is
Do hap thu A = 0,0994211 + 0,00359774*Nong do acid gallic
Plot of Fitted Model A = 0.0994211 + 0.00359774*Nong do acid gallic
0.2 [TT TT [TTT|[TTTỊITTTỊITITT]I mm mnainnnninnnninnnininaning
A.2 Đường chuẩn Hoạt tính chống oxy hóa DPPH va độ hap thu
Simple Regression — Do hap thu A vs Nong do Trolox
Dependent variable: Do hap thu A Independent variable: Nong do Trolox (mg/L) Linear model: Y = a + b*X
Least Squares | Standard T Parameter| Estimate Error Statistic |P-Value Intercept |0,540548 0,00449402 [120,281 |0,0000 Slope -0,00245048 | 0,0000386784 | -63,3552]0,0000 Analysis of Variance
Source Sum of Squares | Df|Mean Square |F-Ratio |P-Value Model 0,378305 1 |0,378305 4013,88]0,0000 Residual 0,00150799 16]0,0000942491
Total (Corr.)|0,379813 17 Correlation Coefficient = -0,998013 R-squared = 99,603 percent The output shows the results of fitting a linear model to describe the relationship between A and Nong do Trolox The equation of the fitted model is
Do hap thu A = 0,540548 - 0,00245048*Nong do Trolox
Plot of Fitted Model A = 0.540548 - 0.00245048*Nong do trolox
B Xử lý số liệu các thí nghiệm khảo sát quá trình thủy phân
B.1 Khảo sát tỷ lệ pha loãng thịt quả/nước (w/w)
Bảng B.1 Kết quả thi nghiệm khảo sát tỷ lệ pha loãng thịt gquả/nước
Ty lệ thịt Hiệu suất thu Hàm lượng Hoạt tính chống oxy quả/nước hồi chất khô phenolie tổng hóa DPPH
Hiệu suất thu hôi chất khô H%
Mau |Count| Average | Standard Coeff of |Minimum | Maximum | Range} Stnd Stnd. deviation variation skewness kurtosis 1/0 |3 68,0633 | 1,81814 2,67125% 66,04 69,56 3,52 |-0,844391
ANOVA Table for H% by Mau Source Sum of Squares | Df|Mean Square | F-Rafio| P-Value Between groups |622,712 3 |207,571 124,67 |0,0000 Within groups | 13,3194 8 |1,66492
Multiple Range Tests for H% by Mau Method: 95,0 percent LSD
Mau \Count|Mean | Homogeneous Groups 1/0 |3 68,0633 | X
Summary Statistics for Phenolic tổng
Mau |Count| Average | Standard Coeff of |Minimum | Maximum | Range | Stnd Stnd. deviation variation skewness | kurtosis 1/0 |3 440.333 |5.45191 1.23813% 434.5 445.3 10.8 |-0.493043
ANOVA Table for Phenolic tong by Mau
Source Sum of Squares | Df|Mean Square | F-Rafio| P-Value Between groups | 83960 1 3 |27986.7 537.77 10.0000 Within groups |416.34 8 52.0425
Multiple Range Tests for Phenolic tong by Mau
Mau |\Count|Mean _|Homogeneous Groups 1/1.5]3 214.4 |X
Hoạt tính chống oxy hóa DPPH
Mau |Count| Average | Standard Coeff of |Minimum | Maximum | Range | Stnd Stnd. deviation variation skewness | kurtosis 1/0 |3 304.167 |3.4990S 1.15037% 301.4 308.1 6.7 10.943002
ANOVA Table for DPPH by Mau
Source Sum of Squares | Df|Mean Square | F-Rafio| P-Value Between groups} 71477.0 3 |23825.7 971.19 10.0000 Within groups | 196.26 8 |24.5325
Multiple Range Tests for DPPH by Mau Method: 95,0 percent LSD
Mau |\Count|Mean _|Homogeneous Groups 1/1.5]3 95.5333 |X
Bang B.2 Kết quả thi nghiệm khảo sát pH pH Hiệu suất thu hồi Hàm lượng phenolie Hoạt tính chống oxy hóa chất khô (%) tổng (mgGAE/L) DPPH (mgTEAC/L) 4.0 81,5+(,9*° 334,744 196, 1+3,3°
Hiệu suất thu hồi chat khô H%
Mau |Count| Average | Standard Coeff of | Minimum | Maximum | Range | Stnd Stnd. deviation variation skewness |kurtosis 4,0 |3 81,47 {0,91 1,11698% 80,56 82,38 1,82 10,0
ANOVA Table for H% by Mau Source Sum of Squares | Df|Mean Square | F-Rafio| P-Value Between groups | 23,7821 3 |7,92736 5,18 0,0280 Within groups | 12,2463 8 |1,53079
Multiple Range Tests for H% by Mau Method: 95,0 percent LSD
Mau\Count|Mean | Homogeneous Groups 5,5 |3 7957 |X
Summary Statistics for Phenolic tổng
Mau |Count| Average | Standard Coeff of |Minimum | Maximum | Range | Stnd Stnd. deviation variation skewness | kurtosis 4 3 334.7 {4.15812 1.24234% 330.2 338.4 8.2 -0.589535
ANOVA Table for Phenolic tong by Mau
Source Sum of Squares | Df|Mean Square | F-Rafio| P-Value Between groups | 748.357 3 1249.452 7.74 0.0095 Within groups |257.92 8 }32.24
Multiple Range Tests for Phenolic tong by Mau
Mau}\Count|Mean _|Homogeneous Groups 5.5 |3 330.167|X
Hoạt tính chống oxy hóa DPPH
Summary Statistics for DPPH Mau |Count| Average | Standard Coeff of |Minimum | Maximum | Range | Stnd Stnd. deviation variation skewness kurtosis
ANOVA Table for DPPH by Mau Source Sum of Squares | Df|Mean Square | F-Rafio| P-Value
Source Sum of Squares | Df|Mean Square | F-Rafio| P-Value Between groups | 708.549 3 |236.183 21.60 10.0005 Within groups |87.48 8 |10.935
Multiple Range Tests for DPPH by Mau Method: 95,0 percent LSD
Mau)\Count|Mean | Homogeneous Groups
B.3 Khao sát tỷ lệ enzyme pectinase/cellulase (v/v)
Bang B.3 Kết qua thi nghiệm khảo sát ty lệ enzyme Pectinase/Cellulase
Ty lệ enzyme Hiệu suất thu héi Ham lượngHoạt tính chống Pectinase/Cellulase chat khô (3%) phenolic tngoxy hóa DPPH
Hiệu suất thu hôi chất khô H%
Summary Statistics for H% mau _ |Count| Average | Standard Coeff of |Minimum | Maximum | Range | Stnd Stnd. deviation variation skewness kurtosis 0/0 |3 62.1533 |0.735006 1.18257% 61.42 62.89 1.47 |0.0144303
ANOVA Table for H% by Mau
Source Sum of Squares | Df|Mean Square | F-Rafio| P-Value Between groups} 1017.36 7 {145.337 81.10 10.0000 Within groups |28.6749 16| 1.79218
Multiple Range Tests for H% by Mau Method: 95,0 percent LSD mau|Count|Mean _ | Homogeneous Groups 0/0 |3 62.1533|X
Summary Statistics for Phenolic tổng
Multiple Range Tests for Phenolic tong by Mau
Method: 95.0 percent LSD mau \Count |Mean Homogeneous Groups 0/0 43 303.513 |X
0/1 3 309893 | X 1/0 ]3 312.51 XX 153 43 316.997 XX 3/1 3 317.467 X J2 l3 322.843 xX 2/1 3 323.477 X 1/1 3 332.28 X mạam |Count|Average|Standard Coeff of |Minimum| Maximum | Range |Stnd Stnd. deviation variation skewness kurtosis 0/0 43 303.513 [2.78857 0.918764% 301.52 |306.7 5.18 {1.11232
ANOVA Table for Phenolic tổng by Mau
Source Sum of Squares \Df |Mean Square |F-Ratio P-Value Between groups |1683.7 7 |240.528 31.72 0.0000 Within groups 121.327 l6 |7.58292
Hoạt tính chống oxy hóa DPPH
Summary Statistics for DPPH Mau |Count| Average |Standard Coeff of |Minimum| Maximum | Range |Stnd Stnd. deviation variation skewness kurtosis 0/0 |3 195.12 |2.20959 1.13243% 19321 |197.54 |4353 {0.695312
ANOVA Table for DPPH by Mau Source Sum of Squares \Df |Mean Square |F-Ratio P-Value Between groups |481.099 7 {68.7284 50.08 0.0000 Within groups |21.9575 16 |1.37235
Multiple Range Tests for DPPH by Mau
Method: 95.0 percent LSD Mau |\Count |Mean Homogeneous Groups
B.4 Khao sát ham lượng enzyme tổng (%v/dwt) Bảng B.4 Kết quả thi nghiệm khảo sát hàm lượng enzyme
Hàm lượng Hiệu suất thu Hàm lượng enzyme hồi chất khô phenolic tong
Hoạt tính chống oxy hóa DPPH (mgTEAC/L)
Hiệu suất thu hồi chất khô H%
Mau |Count| Average | Standard Coeff of Minimum | Maximum | Range | Sind Stnd. deviation variation skewness kurtosis 0% |3 63.0933 | 1.09715 1.73893% 61.84 63.88 2.04 |-1.10858
ANOVA Table for H% by Mau
Source Sum of Squares | Df|Mean Square | F-Rafio| P-Value Between groups} 1192.91 4 1298.227 146.95 10.0000 Within groups |20.2947 1012.02947
Multiple Range Tests for H% by Mau Method: 95,0 percent LSD
Mau}\Count|Mean _|Homogeneous Groups 0% |3 63.0933 |X
Summary Statistics for Phenolic tổng
Mau |Count| Average | Standard Coeff of Minimum | Maximum | Range | Sind Stnd. deviation variation skewness _ | kurtosis 0% |3 306.733 | 4.65224 1.5167% 301.5 310.4 8.9 |-0.950031
ANOVA Table for Phenolic tổng by Mau
Source Sum of Squares | Df|Mean Square | F-Rafio| P-Value Between groups |3418.9 4 1854.724 1637 10.0002 Within groups |522.14 10152.214
Multiple Range Tests for Phenolic tổng by Mau
Mau}\Count|Mean _|Homogeneous Groups 0% |3 306.733|X
Hoạt tính chống oxy hóa DPPH
Mau |Count| Average | Standard Coeff of Minimum | Maximum | Range |Stnd Stnd. deviation variation skewness _ | kurtosis 0% |3 194.733 |4.96622 2.55027% 190.5 200.2 97 {0.74149
ANOVA Table for DPPH by Mau
Source Sum of Squares | Df|Mean Square | F-Rafio| P-Value Between groups | 5528.6 4 |1382.15 52.88 0.0000 Within groups |261.393 10}26.1393
Multiple Range Tests for DPPH by Mau Method: 95,0 percent LSD
Mau}\Count|Mean _|Homogeneous Groups 0% |3 194.733] X
Bang B.5 Kết qua thi nghiệm khảo sát nhiệt độ thủy phân
Khảo sát nhiệt độ thủy phân
Nhiệt Hiệu suấtthuhồi Hàm lượng phenolic Hoạt tính chống oxy hóa tông (mgGAE/L) độ chất khô (%)
Hiệu suất thu hồi chất khô H%
Mau |Count| Average | Standard Coeff of | Minimum | Maximum | Range | Stnd Stnd. deviation variation skewness | kurtosis 40 {3 81.2467 | 1.62488 1.99993% 79.51 82.73 3.22 |-0.48404
ANOVA Table for H% by Mau
Source Sum of Squares | Df|Mean Square | F-Rafio| P-Value Between groups | 76.4764 4 119.1191 9.98 0.0016 Within groups |19.1635 10|1.91635
Multiple Range Tests for H% by Mau Method: 95,0 percent LSD
Mau}\Count|Mean _|Homogeneous Groups 40 |3 81.2467} X
Summary Statistics for Phenolic tổng
Mau |Count| Average | Standard Coeff of Minimum | Maximum | Range |Stnd Stnd. deviation variation skewness kurtosis 40 {3 317.767 | 6.26126 1.97039% 312.8 324.8 12.0 |0.935857
ANOVA Table for Phenolic tổng by Mau
Source Sum of Squares | Df|Mean Square | F-Rafio| P-Value Between groups | 5042.75 4 11260.69 15.28 10.0003 Within groups |825.187 10|82.5187
Multiple Range Tests for Phenolic tong by Mau
Method: 95,0 percent LSDMau|Count Mean Homogeneous Groups40 |3 317 767 X
Hoạt tính chống oxy hóa DPPH
Mau |Count| Average | Standard Coeff of Minimum | Maximum | Range | Stnd Stnd. deviation variation skewness kurtosis 40 {3 210.333 | 9.9631 4.73681% 199.4 218.9 19.5 |-0.713207
ANOVA Table for DPPH by Mau
Source Sum of Squares | Df|Mean Square | F-Rafio| P-Value Between sroups |2810.72 4 1702.679 21.01 10.0001 Within groups |334.387 1033.4387
Multiple Range Tests for DPPH by Mau Method: 95,0 percent LSD
Mau}\Count|Mean _|Homogeneous Groups 40 |3 210.333] X
B.6 Khảo sát thời gian thủy phân
Bảng B.6 Kết quả thi nghiệm khảo sát thời gian thủy phân Thòigian Hiệu suất thu
(phút) hôi chất khô (%) tong (mgGAE/L)
Hàm lượng phenolic Hoạt tinh chống oxy
Hiệu suất thu hồi chất khô H%
Mau |Count| Average | Standard Coeff of Minimum | Maximum | Range | Sind Stnd. deviation variation skewness | kurtosis 0 3 4833 | 1.82502 3.77617% 46.51 50.16 3.65 10.0174348
ANOVA Table for H% by Mau
Source Sum of Squares | Df|Mean Square | F-Rafio| P-Value Between groups |3907.09 5 {781.418 316.47 10.0000 Within groups |29.6303 12|2.46919
Multiple Range Tests for H% by Mau Method: 95,0 percent LSD
Mau\Count|Mean | Homogeneous Groups
Summary Statistics for Phenolic tổng Mau |Count| Average | Standard Coeff of |Minimum | Maximum | Range | Stnd Stnd. deviation variation skewness | kurtosis
ANOVA Table for Phenolic tong by Mau
Source Sum of Squares | Df|Mean Square | F-Rafio| P-Value Between groups} 11390.6 5 {2278.12 47.63 10.0000 Within groups |573.98 12 |47.8317
Multiple Range Tests for Phenolic tổng by Mau
Mau}\Count|Mean _|Homogeneous Groups 0 3 285.9 |X
Hoạt tính chống oxy hóa DPPH
Mau |Count| Average | Standard Coeff of Minimum | Maximum | Range | Stnd Stnd. deviation variation skewness kurtosis 0 3 181.68 |3.54208 1.94962% 178.21 {185.29 |708 |0.125571
ANOVA Table for DPPH by Mau
Source Sum of Squares | Df|Mean Square | F-Rafio| P-Value Between groups | 14691.7 5 [2938.34 135.61 10.0000 Within groups |260.002 12|21.6669
Multiple Range Tests for DPPH by Mau Method: 95,0 percent LSD
Mau}\Count|Mean _|Homogeneous Groups 0 3 181.68 |X
C Xử lý số liệu các thí nghiệm khảo sát lên men chínhC.1 Khảo sát hàm lượng chất khô hòa tan ban đầu
Bảng C.1 Kết quả thí nghiệm khảo sát hàm lượng chất khô hòa tan ban đầu
Hàm lượng chất Hàm lượng Hàm lượng Hoạt tính chong khô hòa tan ban ethanol (%v/v) | phenolic tong oxy hóa DPPH dau (Bx) (mgGAE/L) (mgTEAC/L)
Summary Statistics for Ethanol Mau |\Count|Average|Standard Coeff of Minimum|Maximum | Range | Stnd Stnd. deviation variation skewness kurtosis 16Bx|3 7.46667 {0.11547 1.54647% 7.4 7.6 0.2 1.22474
18Bx|3 7.06667 |0.11547 1.63401% 7.0 7.2 0.2 1.22474 20Bx|3 6.53333 |0.11547 1.7674% 6.4 6.6 0.2 |-1.22474 22Bx|3 6.06667 |0.11547 1.90335% 6.0 6.2 0.2 1.22474 24Bx|3 5.53333 |0.11547 2.08681% 5.4 5.6 0.2 |-1.22474 Total | 15 6.53333 |0.719788 11.0172% 5.4 7.6 2.2 |-0.142883 |-I.01939
ANOVA Table for Ethanol by Mau Source Sum of Squares \Df |Mean Square |F-Ratio P-Value Between groups |7.12 4 1.78 133.50 0.0000 Within groups |0.133333 10 |0.0133333
Multiple Range Tests for Ethanol by Mau
Method: 95.0 percent LSD Mau |Count |Mean Homogeneous Groups 24Bx |3 5.53333 |X
Summary Statistics for Phenolic tổng Mau |Count| Average | Standard Coeff of |Minimum | Maximum | Range} Stnd Stnd. deviation variation skewness kurtosis 16Bx|3 258,433 |5,36315 2,07525% 253,3 264,0 10,7 |0,25542
18Bx]3 265,2 |4,16053 1,56883% 260,6 268,7 8,1 -0,782475 20Bx|3 269,767 |4,45009 1,64961% 265,3 274,2 8,9 |-0,0238332 22Bx|3 275,367 | 11,0636 4,01777% 264,0 286,1 22,1 |-0,181555 24Bx|3 278,267 |5,09346 1,83042% 274,7 284,1 9,4 1,1356 Total] 15 269,407 |9,20105 3,4153% 253,3 286,1 32,8 |0,316941 -0,292655
ANOVA Table for Phenolic tong by Mau
Source Sum of Squares | Df|Mean Square | F-Rafio| P-Value Between groups | 756,783 4 |189,196 4,42 0,0259 Within groups |428,447 10|42,8447
Multiple Range Tests for Phenolic tong by Mau
Method: 95,0 percent LSD Mau |\Count|Mean | Homogeneous Groups
16Bx|3 258,433|X 18Bx]3 2652_ |XX 20Bx|3 269,767 | XXX 22Bx|3 275,367| XX 24Bx|3 278,267| X
Hoạt tính chống oxy hóa DPPH
Summary Statistics for DPPH Mau |Count| Average | Standard Coeff of |Minimum | Maximum | Range} Stnd Stnd. deviation variation skewness kurtosis 16Bx|3 156,167 2,75015 1,76104% 153,4 158,9 5,5 -0,0385617
18Bx]3 157,367 |3,48473 2,2144% 154,2 161,1 6,9 |0,50375320Bx|3 164,067 |3,27465 1,99593% 160,4 166,7 6,3 -0,90410822Bx|3 162,267 |3,80701 2,34614% 158,6 166,2 7,6 {0,22179224Bx|3 161,733 | 1,80093 1,11352% 159,9 163,5 3,6 |-0,117629Total] 15 160,32 |4,0859 2,54859% 153,4 166,7 13,3 |-0,13248 -0,598351
ANOVA Table for DPPH by Mau Source Sum of Squares | Df|Mean Square | F-Rafio| P-Value Between groups] 137,391 4 1343477 3,57 0,0469 Within groups |96,3333 1019,63333
Multiple Range Tests for DPPH by Mau Method: 95,0 percent LSD
Mau |\Count|Mean | Homogeneous Groups 16Bx|3 156,167|X
18Bx]3 157,367| XxX 24Bx|3 161,733|XXX 22Bx|3 162,267| XX 20Bx|3 164,067] xX
C.2 Khao sat ham lượng men
Bang C.2 Kết qua thí nghiệm khảo sát hàm lượng men
Hàm lượng men Hàm lượng Hàm lượng Hoạt tính chống (Yow/w) ethanol (“ov/v) | phenolic ting oxy hóa DPPH
Summary Statistics for Ethanol Mau |Count|Average |Standard Coeff of Minimum | Maximum |Range|Stnd Stnd. deviation variation skewness kurtosis 0% |3 0.133333|0.11547 86.6025% 0.0 0.2 0.2 |-1.22474
ANOVA Table for Ethanol by Mau
Source Sum of Squares \Df |Mean Square |F-Ratio P-Value Between groups {149.21 3 {49.7367 2486.83 0.0000 Within groups |0.16 0.02
Multiple Range Tests for Ethanol by Mau
Method: 95.0 percent LSD Mau Count |Mean Homogeneous Groups
Summary Statistics for Phenolic tổng
Mau_|Count|Average | Standard deviation| Coeff of variation| Minimum |Maximum| Range |Stnd skewness 0% |3 266,5 |2,0664 0,775384% 264,3 268,4 4,1 -0,452224 0,02%|3 269,633 |4,2501 1,57625% 265,4 273,9 8,5 0,0249546 0,04%|3 2727 |1,15326 0,422903% 271,5 273,8 2,3 -0,273838 0,0ó%|3 275,4 |4,25088 1,54353% 271,1 279,6 8,5 -0,0748132 Total H12 271,058 |4,43672 1,63681% 264,3 279,6 15,3 |0,301718
ANOVA Table for Phenolic tổng by Mau
Source Sum of Squares | Df|Mean Square | F-Rafio| P-Value Between groups | 133,063 3 144,3542 4,25 0,0451 Within groups [83,4667 8 |10,4333
Multiple Range Tests for Phenolic tong by Mau
Method: 95,0 percent LSD Mau |Count\|Mean _ | Homogeneous Groups 0% l3 266,5 |X
Hoạt tính chống oxy hóa DPPH
Summary Statistics for DPPH Mau_|Count|Average | Standard deviation| Coeff of variation| Minimum |Maximum| Range |Stnd skewness 0% |3 146,633 |5,78475 3,94504% 141,7 153,0 11,3 |0,74002 0,02%|3 150,167 |5,27857 3,51514% 144,6 155,1 10,5 |-0,376284 0,04%|3 162,233 |7,8015 4,80881% 155,0 170,5 15,5 |0,41407 0,0ó%|3 164,333 |7,35006 4,47265% 156,2 170,5 14,3 |-0,790452 Total H12 155,842 |9,73424 6,24624% 141,7 170,5 28,8 |0,333009
ANOVA Table for DPPH by Mau Source Sum of Squares | Df|Mean Square | F-Rafio| P-Value Between groups | 689,883 3 |229,961 5,22 0,0275 Within groups |352,427 8 |44,0533
Multiple Range Tests for DPPH by Mau Method: 95,0 percent LSD
Mau |Count\|Mean _ | Homogeneous Groups 0% l3 146,633 |X
Bảng C.3 Kết qua thí nghiệm khảo sát nhiệt độ lên men chính
Ham lượng phenolic Hoat tinh chong tong (mgGAE/L) oxy hóa DPPH
Summary Statistics for Ethanol Mau |\Count|Average|Standard Coeff of Minimum|Maximum | Range | Stnd Stnd. deviation variation skewness kurtosis I5oC|3 4.4 0.0 0.0% 4.4 4.4 0.0
ANOVA Table for Ethanol by Mau Source Sum of Squares \Df |Mean Square |F-Ratio P-Value Between groups | 10.6233 3 {3.54111 212.47 0.0000 Within groups |0.133333 8 0.0166667
Multiple Range Tests for Ethanol by Mau
Method: 95.0 percent LSD Mau |Count |\Mean Homogeneous Groups
Summary Statistics for phenolic tong Mau |Count| Average | Standard Coeff of |Minimum | Maximum | Range} Stnd Stnd. deviation variation skewness kurtosis 150C}3 265,1 |9,36002 3,53075% 256,0 274,7 18,7 |0,169492
ANOVA Table for phenolic tổng by Mau
Source Sum of Squares | Df|Mean Square | F-Rafio| P-Value Between groups | 1228,17 3 409,389 5,23 0,0273 Within groups [625,913 8 |78,2392
Multiple Range Tests for phenolic tong by Mau
Method: 95,0 percent LSD Mau |\Count|Mean | Homogeneous Groups
15oC |3 2651 |X 30oC |3 268,367|X 25oC |3 278,733|XX 20oC |3 291,0 xX
Hoạt tính chống oxy hóa DPPH
Summary Statistics for DPPH Mau |Count| Average | Standard Coeff of | Minimum | Maximum | Range | Stnd Stnd. deviation variation skewness | kurtosis 150C}3 171,6 |4,27551 2,49156% 166,8 175,0 8,2 -0,930211
ANOVA Table for DPPH by Mau Source Sum of Squares | Df|Mean Square | F-Rafio| P-Value Between groups |582,39 3 1194,13 7,51 0,0103 Within groups |206,927 8 |25,8658
Multiple Range Tests for DPPH by Mau Method: 95,0 percent LSD
Mau |\Count|Mean | Homogeneous Groups 30oC |3 154,633|X
25oC |3 163,8 |XX20oC |3 171,5 xX15oC |3 171,6 xX
C.4 Khảo sát thời gian lên men chính
Bảng C.4 Kết quả thí nghiệm khảo sát thời gian lên men chính Thời gian Hàm lượng Hàm lượng phenolic Hoạt tính chống oxy
(ngày) ethanol (“ov/v) tong (mgGAE/L) hoa DPPH
Summary Statistics for Ethanol Mau |Count|Average|Standard Coeff of Minimum | Maximum | Range| Sind Stnd. deviation variation skewness | kurtosis 2 ngày |3 3.06667 |0.11547 3.76533% 3.0 3.2 0.2 1.22474
ANOVA Table for Ethanol by Mau Source Sum of Squares \Df |Mean Square |F-Ratio P-Value Between groups |100.917 3 [33.6389 1261.46 0.0000 Within groups |0.213333 8 0.0266667
Total (Corr.) 101.13 11 Multiple Range Tests for Ethanol by Mau Method: 95.0 percent LSD
Mau Count |Mean Homogeneous Groups 2ngay |3 3.06667 |X
Hàm lượng Phenolic tông Summary Statistics for Phenolic tổng
Mau |Counf| Average | Standard deviation| Coeff of variation |Minimum | Maximum | Range | Stnd skewness2 ngày |3 275,0 |5,85577 2,12937% 269,3 281,0 11,7 |0,162594 ngày |3 277,833 |4,80555 1,72965% 272,9 282,5 9,6 |-0,1760296 ngày |3 280,3 |0,7 0,249732% 279,6 281,0 1,4 109,08 ngày |3 287,267 |3,98037 1,3856% 283,6 291,5 7,9 |0,443822Total |12 280,1 |5,99303 2,1396% 269,3 291,5 22,2 10,0205391
ANOVA Table for Phenolic tổng by Mau
Source Sum of Squares | Df|Mean Square | F-Rafio| P-Value Between groups |247,647 3 |82,5489 4,48 0,0399 Within groups | 147,433 8 |18,4292
Multiple Range Tests for Phenolic tong by Mau
Method: 95,0 percent LSD Mau |Count|Mean |Homogeneous Groups 2 ngày |3 2750 |X
Hoạt tính chống oxy hóa DPPH
Summary Statistics for DPPH Mau |Counf| Average | Standard deviation| Coeff of variation |Minimum | Maximum | Range | Stnd skewness 2 ngày |3 164,9 16.8942 4,18084% 158,5 172,2 13,7 |0,408311 4 ngày |3 174,967 15,4151 3,09493% 170,1 180,8 10,7 |0,549924 6 ngày |3 183,867 |6,26285 3,40619% 178,4 190,7 12,3 |0,6613 8 ngày |3 185,033 |5,30786 2,86859% 179,9 190,5 10,6 10,19904 Total |12 177,192 |9,88456 5,57845% 158,5 190,7 32,2 |-0,619202
ANOVA Table for DPPH by Mau Source Sum of Squares | Df|Mean Square | F-Rafio| P-Value Between groups | 786,249 3 |262,083 7,27 0,0113 Within groups |288,5 8 |36,0625
Multiple Range Tests for DPPH by Mau Method: 95,0 percent LSD
Mau |Count|Mean |Homogeneous Groups 2 ngày |3 1649 |X
D Anh hưởng của các thông số đến hàm lượng phenolic tổng (quá trình lên men phụ)
D.1 Khảo sát nhiệt độ lên men phụ
Bảng D.1 Kết quả thí nghiệm khảo sát nhiệt độ lên men phụ
Nhiệt Hàm lượng phenolic tổng Hoạt tính chống oxy hóa DPPH độ (mgGAE/L) (mgTEAC/L) °C 266,4+4,8 175,4+3,42
Summary Statistics for Phenolic tổng
Mau |Coumi| Average |Standard Coeff of Minimum|Maximum | Range} Sind Stnd. deviation variation skewness _ | kurtosis 100C|3 261.567 |3.00888 1.15033% 258.7 264.7 6.0 |0.279793
ANOVA Table for Phenolic tổng by Mau
Source Sum of Squares \Df |Mean Square |F-Ratio P-Value Between groups |3142.82 4 1785.704 29.07 0.0000 Within groups |270.273 10 |27.0273
Multiple Range Tests for Phenolic tong by Mau
Mau |Count |\Mean Homogeneous Groups 250C |3 228.367 |X
Hoạt tính chống oxy hóa DPPH
Mau |Coumi| Average |Standard Coeff of Minimum|Maximum | Range} Sind Stnd. deviation variation skewness kurtosis 100C]|3 1739 |3.24191 1.86424% 171.0 177.4 6.4 |0.568736
I5oC|3 1722 |2.227II 1.29333% 170.2 174.6 4.4 10.553065 200C}3 165.567 |2.31805 1.40007% 162.9 167.1 4.2 |-1.18384 25oC|3 162.267 | 1.97569 1.21755% 160.5 164.4 3.9 |0.570202 5oC |3 175.4 |3.38674 1.93087% 172.7 179.2 6.5 |0.924469 Total} 15 169.867 |5.72072 3.36777% 160.5 179.2 18.7 |-0.261817 |-0.785739
ANOVA Table for DPPH by Mau
Source Sum of Squares \Df |Mean Square |F-Ratio P-Value Between groups [385.74 4 96.435 13.31 0.0005 Within groups |72.4333 10 |7.24333
Multiple Range Tests for DPPH by Mau Method: 95,0 percent LSD
Mau |Couní |\Mean Homogeneous Groups 250C |3 162.267 |X
D.2 Khảo sát thời gian lên men phụ
Bảng D.2 Kết quả thí nghiệm khảo sát thời gian lên men phụ
(mgGAE/L) gian Ham lượng phenolic tổng
Hoạt tinh chống oxy hóa DPPH
Summary Statistics for Phenolic Mau |Count| Average |Standard Coeff of Minimum|Maximum | Range | Stnd Stnd. deviation variation skewness _ |kurtosis IS 43 272.233 | 6.86246 2.5208% 264.9 278.5 13.6 }|-0.482642
ANOVA Table for Phenolic by Mau Source Sum of Squares \Df |Mean Square |F-Ratio P-Value Between groups |358.951 4 89.7377 4.35 0.0270 Within groups |206.133 10 {20.6133
Multiple Range Tests for Phenolic by Mau Method: 95.0 percent LSD
Mau |\Count |Mean Homogeneous Groups 35 3 258.967 |X
Hoạt tinh chong oxy hóa DPPH
Summary Statistics for DPPH Mau |Count| Average |Standard Coeff of Minimum | Maximum | Range | Stnd Stnd. deviation variation skewness kurtosis IS 43 180.067 |4.24774 2.35898% 175.5 183.9 8.4 |-0.532966
ANOVA Table for DPPH by Mau Source Sum of Squares \Df |Mean Square |F-Ratio P-Value Between groups |245.617 4 161.4043 3.83 0.0387 Within groups 160.307 10 {16.0307
Multiple Range Tests for DPPH by Mau Method: 95.0 percent LSD
Mau |Count |Mean Homogeneous Groups 35 3 168.9 x
E Phương pháp xác định các thành phan nguyên liệu
E.1 Phương pháp xác định hàm lượng pectin (phương pháp Ca-pectat) [A310]
Chuẩn bị: dung dịch CH3COOH IN, dung dich NaOH 0,1N, dung dịch CaCl2 2N (cân 230g CaCl trong 1 lít nước cất, khuấy đều và lọc can thận)
Cân 20g nguyên liệu thanh long, giã nhỏ rồi cho vào 100mL nước cat, gia nhiệt lên 40 + 45°C, sau 2 + 3 giờ, lay dịch chiết lần thứ nhất, tương tự cho lần 2 và 3 sao cho tong thé tích dịch chiết là 200mL.