Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 25 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
25
Dung lượng
0,98 MB
Nội dung
Chuyªn ®Ò 1: Số phầntửcủamộttập hợp.Tập hợpcon 1.Một tậphợp có thể có một ,có nhiều phần tử, có vô sốphần tử,cũng có thể không có phầntử nào. 2.Tập hợp không có phầntử nào gọi là tập rỗng.tập rỗng kí hiệu là : Ø. 3.Nếu mọi phần tửcủatậphợp A đều thuộc tậphợp B thì tậphợp A gọi là tậphợpconcủatậphợp B, kí hiệu là A ⊂ B hay B ⊃ A. Nếu A ⊂ B và B ⊃ A thì ta nói hai tậphợp bằng nhau,kí hiệu A=B. Ví dụ 4. Cho hai tậphợp A = { 3,4,5}; B = { 5,6,7,8,9,10}; a) Mỗi tậphợp có bao nhiêu phần tử? b) Viết các tậphợp khác tậphợp rỗng vừa là tậphợpconcủatậphợp A vừa là tậphợpconcủatậphợp B. c) Dùng kí hiệu ⊂ để thực hiên mối quan hệ giữa tậphợp A,B và tậphợp nói trong câu b). Dung hình vẽ minh họa các tậphợp đó. Giải. a) Tậphợp A có 3 phầntử , tậphợp B có 6 phần tử. b) Vì số 5 là phầntử duy nhất vừa thuộc tậphợp A vừa thuộc tậphợp B.vì vậy chỉ có mộttậphợp C vừa là tập hợpconcủatậphợp A ,vừa là tập hợpconcủatậphợp B: C = {5}. c) C ⊂ A và C ⊂ B. biểu diễn bởi hình vẽ: Bài tập: 1. Cho hai tậphợp M = {0,2,4,… ,96,98,100}; Q = { x ∈ N* | x là số chẵn ,x<100}; a) Mỗi tậphợp có bao nhiêu phần tử? b)Dùng kí hiệu ⊂ để thực hiên mối quan hệ giữa M và Q. 2.Cho hai tậphợp R={m ∈ N | 69 ≤ m ≤ 85}; S={n ∈ N | 69 ≤ n ≤ 91}; a) Viết các tậphợp trên; b) Mỗi tậphợp có bao nhiêu phần tử; c) Dùng kí hiệu ⊂ để thực hiên mối quan hệ giữa hai tậphợp đó. 3.Viết các tậphợp sau và cho biết mỗi tậphợp có bao nhiêu phần tử: a) Tậphợp A các sốtự nhiên x mà 17 – x = 3 ; b) Tậphợp B các sốtự nhiên x mà 15 – y = 16; c) Tậphợp C các sốtự nhiên x mà 13 : z = 1; d) Tậphợp D các sốtự nhiên t , t ∈ N* mà 0:t = 0; 4. Tính số điểm về môn toán trong học kì I . lớp 6A có 40 học sinh đạt ít nhất một điểm 10 ; có 27 học sinh đạt ít nhất hai điểm 10 ; có 29 học sinh đạt ít nhất ba điểm 10 ; có 14 học sinh đạt ít nhất bốn điểm 10 và không có học sinh nào đạt được năm điểm 10. dung kí hiệu ⊂ để thực hiên mối quan hệ giữa các tậphợp học sinh đạt số các điểm 10 của lớp 6A , rồi tính tổng số điểm 10 của lớp đó. 5. Bạn Nam đánh số trang củamột cuốn sách bằng các consốtự nhiên từ1 đến 265 .hỏi bạn nam phải viết tất cả bao nhiêu chữ số? 6. Để tính số trang củamột cuốn sách bạn Viết phải viết 282 chữ số. hỏi cuốn sách đó có bao nhiêu trang. Chuyªn®Ò2 C¸c phÐp to¸n trong N 1. Tính chất giao hoán của phép cộng và phép nhân. D a + b = b + a ; a.b = b.a Khi đổi chỗ các số hạng trong một tổng thì tổng không đổi Khi đổi chõ các thừa số trong một tích thì tích không đổi. 2. Tính chất kết hợpcủa phép cộng và phép nhân: (a + b ) + c = a + ( b + c); (a.b).c = a(b.c); Muốn cộng một tổng hai số với mộtsố thứ ba , ta có thể cộng số thứ nhất với tổng của hai số thứ hai và thứ ba. Muốn nhân một tích hai số với số thứ ba ,ta có thể nhân số thứ nhất với tích củasố thứ hai và số thứ ba. 3. Tính chất phân phối của phép nhân đối với phép cộng.: a(b+ c) = ab + ac Muốn nhân mộtsố với một tổng , ta có thể nhân số đó với từng số hạng của tổng rồi cộng các kết quả lại. 1. Điều kiện để thực hiện phép trừ là số bị trừ lớn hơn hoặc bằng số trừ. 2. Điều kiện để a chia hết cho b ( a,b ∈ N ; b ≠ 0) là có sốtự nhiên p sao cho a= b.p. 3. Trong phép chia có dưa; số bị chia = số chia x thương + số dư ( a = b.p + r) số dư bao giờ cũng khác 0 và nhỏ hơn số chia. Ví dụ . a) Tính tổng của các sống tự nhiên từ1 đến 999; b) Viết liên tiếp các sốtự nhiên từ1 đến 999 thành một hang ngang ,ta được số 123….999. tính tổng các chữ sốcủasố đó. Giải . a) Ta có 1 + 2 + 3 + ……+ 997 + 998 + 999 = (1+ 999) + ( 2 + 998 ) +(3 + 997 ) … + (409 + 501 ) = 1000.250 = 250000. b) số 999 có tổng các chữ số bằng 27, vì thế nếu tách riêng số 999 , rồi kết hợp1 với 998; 2 với 997 ; 3 với 996;… thành từng cặp để có tổng bằng 999, thì mỗi tổng như vậy đều có tổng các chữ số là 27.vì vậy có 499 tổng như vậy ,cộng thêm với số 999 cũng có tổng các chữ số bằng 27.do đó tổng các chữ số nêu trên là 27.50= 13500. Ví dụ . Tìm số có hai chữ số,biế rằng nếu viêt chữ số 0 xen giữa hai chữ củasố đó thì được số có ba chữ số gấp 9 lần số có hai chữ số ban đầu. Giải : gọi số có hai chữ số phải tìm là ab trong đó a ,b là các sốtự nhiên từ1 đến 9.theo đề bài ,ta có: ba0 = 9 ab hay 100a + b = 9( 10a + b ) hay 100a + b = 90a + 9b Do đó 5a = 4b. bằng phép thử trực tiếp ta thấy trong các sốtự nhiên từ1 đến 9 chỉ có a= 4 ,b = 5 thỏa mãn 4a = 5b. Số có hai chữ số phải tìm là 54. Bài tập : 1. Tính a) 1 + 7 + 8 +15 + 23 + ….+ 160; b) 1 + 4 + 5 + 9 + 14 +….+ 60 + 97; c) 78.31 + 78.24 + 78.17 +22.72. 2.a)Hãy viết liên tiếp 20 chữ số 5 thành một hàng ngang,rồi đặt dấu + xen giữa các chữ số đó để được tổng bằng 1000. b) Hãy viết liên tiếp tám chữ số 8 thành một hàng ngang,rồi đặt dấu + xen giữa các chữ số đó để được tổng bằng 1000. 3.Chia các sốtự nhiên từ1 đến 100 thành hai lớp : lớp số chẵn và lớp số lẻ.hỏi lớp nào có tổng các chữ số lớn hơn và lớn hơn bao nhiêu? 4. Điền các chữ số thích hợp vào các chữ để được phép tính đúng : a) ab1 + 36 = 1ab ; b) abc + acc + dbc = bcc 5. Cho ba chữ số a,b,c với 0 < a < b < c ; a) Viết tậphợp A các số có ba chữ số ,mỗi số gồm cả ba chữ số a, b ,c: b) Biết rằng tổng hai số nhỏ nhất trong tậphợp A bằng 488.tìm tổng các chữ a + b + c. 5. Cho 1 bảng vuông gồm 9 ô vuông như hình vẽ. hãy điền vào các ô của bảng các sốtự nhiên từ1 đến 10 (mỗi số chỉ được viết một lần) sao cho tổng các số ở mỗi hang ,mỗi cột ,mỗi đường chéo bằng nhau. 6. Kí hiệu n! là tích của các sốtự nhiên từ1 đến n : n! = 1.2.3…n. Tính : S = 1.1! + 2.2! + 3.3! + 4.4! + 5.5! 7. Trong một tờ giấy kẻ ô vuông kích thước 50.50 ô vuông .trong mỗi ô người ta viết mộtsốtự nhiên . biết rằng bốn ô tạo thành một hình như hình vẽ thì tổng các số trong bốn ô đó đều bằng 4 .hãy chứng tỏ rằng mỗi số đó đều bằng 1. 4 1 0 2 8 8.Một số có bảy chữ số ,cộng với số được viets bảy chữ số đó nhưng theo thứ tự ngược lại thì được tổng là số có bảy chữ số.hãy chứng tổ rằng tổng tìm được có ít nhất một chữ số chẵn. 9.Cho bảng gồm 16 ô vuông như hình vẽ .hãy điền vào các ô bảng của bảng các sốtự nhiên lẻ từ1 đến 31 (mỗi số chỉ viết một lần.) sao cho tổng các số trong cùng một hàng, cùng một cột , cùng một đường chéo đều bằng nhau 10.Cho dãy số 1,2,3,5,8,13,21,34,….( dãy số phi bô na xi) trong đó mỗi số (bắt đầu từsố thứ ba) bằng tổng hai số đứng liền trước nó.chọn trong dãy số đó 8 số liên tiếp tùy ý.chứng minh rằng tổng của 8 số này không phải là mộtsốcủa dãy đã cho. 11. Mộtsố chắn có bốn chữ số, trong đó chứ số hàng trăm và chứ số hang chục lập thành mộtsố gấp ba lần chữ số hàng nghìn và gấp hai lần chữ số hang đơn vị.tìm số đó. 12.Tìm các số a,b,c,d trong phếp tính sau: abcd + abc + ab + a = 4321 . 13.Hai người chơi một trò chơi lần lượt bốc những viên bi từ hai hộp ra ngoài.mỗi người đến lượt mình bốc mộtsố viên bi tùy ý .người bốc viên bi cuối cùng đối với cacr hai hộp là người thắng cuộc.biết rằng ở hộp thứ nhất có 190 viên bi ,hộp thứ hai có 201 viên bi.hãy tìm thuật chơi để đảm bảo người bốc bi đầu tiên là người thắng cuộc. Bài tập cñng cè 1. Tính giá trị của biểu thức một cách hợp lí: A = 100 + 98 + 96 + ….+ 2 - 97 – 95 - …- 1 ; B = 1 + 2 – 3 – 4 + 5 + 6 – 7 – 8 + 9 + 10 – 11 – 12 + …- 299 – 330 + 301 + 302; 2. Tính nhanh a) 53.39 +47.39 – 53.21 – 47.21. b)2.53.12 + 4.6.87 – 3.8.40; c) 5.7.77 – 7.60 + 49.25 – 15.42. 3.Tìm x biết: a) x : [( 1800+600) : 30] = 560 : (315 - 35); b) [ (250 – 25) : 15] : x = (450 - 60): 130. 4. Tổng của hai số bằng 78293.số lớn trong hai số đó co chữ số hàng dơn vị là 5 ,chữ hàng chục 1,chữ số trăm là 2.nếu ta gạch bỏ các chữ số đó đi thì ta được mộtsố bằng số nhỏ nhất .tìm hai số đó. 5.Một phếp chia có thương là 6 dư 3 .tổng củasố bị chia ,số chia và số dư là 195.tìm số bị chia và số chia. 6.Tổng của hai số có a chữ số là 836.chữ số hàng trăm củasố thứ nhất là 5 ,của số thứ hai là 3 .nếu gạch bỏ các chữ số 5 và 3 thì sẽ được hai số có hai chữ số mà số này gấp 2 lần số kia.tìm hai số đó. 15 29 23 5 3 17 27 9 7.Một học sinh khi giải bài toán đáng lẽ phải chia 1số cho 2 và cộng thương tìm được với 3 .nhưng do nhâm lẫn em đó đã nhân số đó với 2 và sau đó lấy tích tìm được trừ đi 3 .mặc dù vậy kết quả vẫn đúng .hỏi số cần phải chia cho 2 là số nào? 8. Tìm số có ba chữ số .biết rằng chữ số hàng trăm bằng hiệu của chữ số hàng chục với chữ số hàng đơn vị.chia chữ số hàng chục cho chữ số hàng đơn vị thì được thương là 2 và dư 2.tích củasố phải tìm với 7 là 1số có chữ số tận cùng là 1. 9. Tìm sốtự nhiên a ≤ 200 .biết rằng khi chia a cho sốtự nhiên b thì được thương là 4 và dư 35 . 10. Viết số A bất kì có 3 chữ số ,viết tiếp 3 chữ số đó 1 lần nữa ta được số B có 6 chữ số.chia số B cho 13 ta được số C. chia C cho 11 ta được số D.lại chia số D cho 7.tìm thưởng của phép chia này. 11. Khi chia số M gồm 6 chữ số giống nhau cho số N gồm 4 chữ số giống nhau thì được thương là 233 và số dư là 1số r nào đó .sau khi bỏ 1 chữ sốcủasố M và 1 chữ sốcủasố N thì thương không đổi và số dư giảm đi 1000.tìm 2 số M và N? chuyªn ®Ò 3 Lũy thừa vµ c¸c phÐp to¸n 1. Lũy thừa bậc n của a là tích của n thừa số bằng nhau,mỗi thừa số bằng a: a n = a.a…a ; (n thừa số a, n ≠0). 2.Khi nhân hai lũy thừa của cùng cơ số , ta giữ nguyên cơ số và cộng các số mũ a m a n = a (m+n) Ví dụ . Hãy chứng tỏ rằng: a) (2 2 ) 3 = 2 2 . 3 ; (3 3 ) 2 = 3 3 . 2 ; (5 4 ) 3 = 5 4. 3 ; b) (a m ) n = a m . n ; (m,n ∈ N). Giải: a) (2 2 ) 3 = 2 2 .2 2 .2 2 = 2 2+ 2+2 = 2 6 = 2 2.3 tương tự làm như vậy tao có: (3 3 ) 2 = 3 3 . 2 ; (5 4 ) 3 = 5 4. 3 ; b) Một cách tổng quát ta có (a m ) n = a m . n ; (m,n ∈ N). Ví dụ 9. a) Hãy so sánh : 2 3 .5 3 với (2.5) 3 ; 3 2 .5 2 với (2.5) 2 ; b) Hãy chứng minh rằng : (a.b) n = a n .b n ; (n ≠ 0); Giải . a) 2 3 .5 3 = 8.125 = 1000; (2.5) 3 = 10 3 = 1000; Vậy 2 3 .5 3 = (2.5) 3 Tương tự ta dễ dàng chưng minh được : (a.b) n = a n .b n ; (n ≠ 0); 3 2 .5 2 = (2.5) 2 ; Bài tập: 1. Viết các số sau dưới dạng lũy thừa: a) 10 ; 100 ; 1000; 10000; 100 0; (n số 0 ); b) 5 ; 25; 625; 3125; 2.So sánh các số sau: a) 3 200 với 2 3000 ; b) 125 5 với 25 7 ; c)9 20 với 27 13 d)3 54 với 2 81 ; 3.Viết các tích sau đướ dạng lũy thừa: a) 5.125.625 ; b) 10.100.1000 ; c) 8 4 .16 5 .32; d) 27 4 .81 10 ; 4.So sánh: a) 10 30 với 2 100 ; b) 5 40 với 620 10 ; 5.Một hình lập phương có cạnh là 5 m. a) tính thể tích của hình lập phương; b) nếu cạnh của hình lập phương tăng lên 2 lần , 3 lần thì thể tích của hình lập phương tăng lên bao nhiêu lần. 6. Trong cách viết ở hệ thập phânsố 2 100 có bao nhiêu chữ số? C®4.Tính chất chia hết củamột tổng,mét hiÖu, mét tÝch 1. Tính chất 1.nếu tất cả các số hạng củamột tổng đều chia hết cho cùng mộtsố thì tổng chia hết cho số đó : a m ; b m ; c m ⇒ a + b + c m . 2. Tính chất 2 ,nếu chỉ có mộtsố hạng của tổng không chia hết cho mộtsố ,các số hạng còn lại đều chia hết cho số đó thì tổng không chia hết cho số đó: a . . m ; b m ; c m ⇒ a + b + c . . . m . Ví dụ: Cho ba sốtự nhiên a, b, c, trong đó a và b là các số chia hết cho 5 dư 3 còn c là số khi chia cho 5 dư 2. a) Chứng tổ rằng mỗi tổng (hiệu)sau: a + c ; b + c ; a - b ; đều chia hết cho 5 . b) Mỗi tổng(hiệu) sau: a+ b + c ; a + b – c ; a+ c – b ;có chai hết cho 5 không? Giải : đặt a = 5n + 3 ; b = 5m + 3 ; c = 5p + 2 ;(n,m,p ∈ N) a) từ đó ta có : a + c = (5n + 5p + 5) 5 vì các số hạng đều chia hết cho 5. Tương tự: b + c = 5m + 5p + 5 5 ; a – b = 5n – 5m 5 b) a + b + c = 5n+ 5m + 5p + 8 không chia hết cho 5 vì 8 . . . 5; tương tự: a + b – c . . . 5 ; a + c – b . . . 5. Bài tập: 1.Tìm sốtự nhiên x để: a) 113 + x 7 b) 113 + x 13 2. Chứng tỏ rằng: ab + ba 11 ; abc - cba 99; 3.Chứng tỏ rằng: a) Trong ba sốtự nhiên liên tiếp , có một và chỉ mộtsố chia hết cho 3; b) Trong hai sốtự nhiên liên tiếp , cố một và chỉ mộtsố chia hết cho 4; 4. Chứng tỏ rằng : 8 10 – 8 9 - 8 8 55 ; 7 6 + 7 5 - 7 4 11; 81 7 – 27 9 - 9 13 45; 10 9 – 10 8 - 10 7 555; 5.Chứng tỏ rằng : nếu số abcd 99 thì ab + cd 99 và ngược lại. 6.Chứng tỏ rằng : nếu số abcd 101 thì ab - cd 101 và ngược lại 7.Chứng tỏ rằng: a) Mọi sốtự nhiên có ba chữ số giống nhau đều chia hết cho 37; b) Hiệu giữa số có dạng 11ab và số được viết bởi chính các số đó nhưng theo thứ tự ngược lại thì chia hết cho 90. 8. Mộtsố có ba chữ số chia hết cho 12 và chữ số hang trăm bằng chữ số hang chục . Chứng tỏ rằng tổng ba chữ sốcủasố đó chia hết cho 12. C®6. Dấu hiệu chia hết 1. Dấu hiệu chia hết cho 9: các số có tổng các chữ số chia hết cho 9 thì chia hết cho 9 và chỉ những số đó mới chia hết cho 9. 1. Dấu hiệu chia hết cho 3: các số có tổng các chữ số chia hết cho 3 thì chia hết cho 9 và chỉ những số đó mới chia hết cho 3.Dấu hiệu chia hết cho 2 : các số có chữ số tận cùng là chữ số chẵn thì chia hết cho 2 và chỉ những số đó mới chia hết cho 2. 2. Dấu hiệu chia hết cho 5: các số có chữ số tận cùng là chữ số 0 hoặc 5 thì chia hết cho 5 và chỉ những số đó mới chia hết cho 5. 2. Ví dụ1. Dùng ba chữ số 9, 0 ,5 để ghép thành các số co ba chữ số thỏa mãn một trong các điều kiên sau: a) Số đó chia hết cho 5; b) Số đó chia hết cho 2 và cho 5. Giải. a) Mộtsố chia hết cho 5 thì số đó tận cùng bằng 0 hoặc 5 . vậy có ba số có chữ số chia hết cho 5 là: 950 ; 590 ; 905. b)Một số chia hết cho 2 và cho 5 thì số đó tận cùng bằng 0 . vậy có hai số có chữ số chia hết cho 2 và cho 5 là: 950 ; 590 ; Ví dụ2. Cho số yx43123 . hãy thay x,y bởi các chữ sốđểsố đã cho chia hết cho 3 và 5. Giải. Số yx43123 5 nên y = 0 hoặc y = 5. • Với y = 0 , ta có số 430123x . số này phải chia hết cho 3 , nên 1 + 2 + 3 + x + 4+ +3 3 hay 12 + (x+ 1) 3 , nhưng 1≤ x + 1 ≤ 10 ,nên x + 1 = 3 ; 6 ; 9. - Nếu x + 1 = 3 thì x = 2 ,ta được 1232430 - Nếu x + 1 = 6 thì x = 5 ,ta được 1235430 - Nếu x + 1 = 3 thì x = ,ta được 1238430 Với y = 5 , ta có số 435123x . số này phải chia hết cho 3 , nên 1 + 2 + 3 + x + 4+ +3 + 5 3 hay 18 + x 3 ,nên x = 0 ; 3 ; 6 ; 9. ta có các số sau : 1230435; 1233435; 1236435 và 1239435 Bài tập : 1. Điền chữ số vào dấu * để được số : b) Chia hết cho 2 : 46*3 ; *199 ; 1*20 ; c) Chia hết cho 5 : 5*16 ; *174 ; 6*53 ; 2. Dùng cả ba số 5,6,9 để ghép thành các sốtự nhiên có ba chữ số: a) Lớn nhất và chia hết cho 5; b) Nhỏ nhất và chia hết cho 2; 3. Tìm tậphợp các sốtự nhiên n vừa chia hết cho 2 vừa chia hết cho 5 và 1995 ≤ n ≤2001 . 4. Chứng tỏ rằng trong năm sốtự nhiên liên tiếp luốn có mộtsố chia hết cho 5. 5. Chứng tỏ rằng: a) Trong ba sốtự nhiên bất kì bao giờ cũng chọn được hai số có hiệu chia hết cho 2; b) Trong sáu sốtự nhiên bất kì bao giờ cũng chọn được hai số có hiệu chia hết cho 5; 6. Chứng tỏ rằng: a) (5n + 7 )(4n + 6) 2 với mọi sốtự nhiên n; b) (8n + 1 )(6n + 5) . . . 2 với mọi sốtự nhiên n; 7. Người ta viết các sốtự nhiên tùy ý sao cho số các số lẻ gấp đôi số các số chẵn. tổng các số đã viết có chia hết cho 2 hay không? Vì sao? 8. Có 5 tờ giấy .người ta xé tờ giấy đó thành 6 mảnh . lại lấy một trong số mảnh giấy nào đó, xé mỗi mảnh thành 6 mảnh.cứ như vậy sau mộtsố lần , người ta đếm được 2001 mảnh giấy.hỏi người ta đếm đúng hay sai? 9. Cho sáu chữ số : 2 , 3 ,5 ,6 ,7 ,9. a) cố bao nhiêu số có ba chữ số ,các chữ số trong mỗi số đều khhacs nhau, được lập thành từ các chữ số trên? b) Trong các số được lập thành có bao nhiêu số nhỏ hơn 400? Bao nhiêu số là số lẻ ? bao nhiêu số chia hết cho 5? Bài tậpcñng cè: 1.Điền chữ số vào dấu * để: a) 2001 + 3*2 chia hết cho 3; b) 4*793*5 chia hết cho 9; 2. Điền chữ số vào dấu * để được số chia hết cho 3 mà không chia hết cho 9 : *51 và *745 3.Dùng ba trong 4 chữ số 3,6,9,0 hãy ghép thành sốtự nhiên có ba chữ số sao cho số đó: a) Chia hết cho 9; b) Chia hết cho 3 mà không chia hết cho 9. 4. Phải thay các chữ số x, y bởi chữ số nào đểsố yx44123 3 5. Tổng (hiệu) sau có chia hết cho 3 , cho 9 không? 10 2001 + 2 ; 10 2001 – 1 . 6. Tìm các chữ số x,y biết rằng số yx356 chia hết cho 2 và 9. 7. Tìm các chữ số x,y biết rằng số yx171 chia hết cho 445. 8. Tìm tất cả các số có dạng ba146 , biết rằng số đó chai hết cho 3 , cho 4 và cho 5. 9. Tìm hai sốtự nhiên liên tiếp , trong đó có một chữ số chia hết cho 9 , biết rằng tổng của hai số đó thỏa mãn các điều kiện sau: a) Là só có ba chữ số; b) Là số chia hết cho 5; c) Tổng của chữ số hàng trăm và chữ số hàng đơn vị là số chia hết cho 9; d) Tổng của chữ số hàng trăm và chữ số hàng chục là số chia hết cho 4; C§7 Phân tích mộtsố ra thừa số nguyên tố. Phân tích mộtsốtự nhiên ra thừa số nguyên tố là viết số đó dưới dạng một tích các thừa số nguyên tố . mọi sốtự nhiên lớn 1 đều phân tích được ra thừa số nguyên tố. Dù phân tích mộtsố ra thừa số nguyên tố bằng cách nào thì cuối cùng cũng được cùng một kết quả. Ví dụ . Cho sôtự nhiên A = a x b y c z trong đó a, b, c, là các số nguyên tố đôi một khác nhau, còn x, y ,z là các sốtự nhiên khác 0 .chứng tỏ rằng số ước sốcủa A được tính bởi công thức : (x + 1)(y + 1)(z + 1). Giải. Số ước sốcủa A chỉ chứa thừa số nguyên tố a là x, chỉ chứa thừa số nguyên tố b là y, chỉ chứa thừa số nguyên tố c là z, chỉ chứa thừa số nguyên tố ab là xy, chỉ chứa thừa số nguyên tố ac là xz, chỉ chứa thừa số nguyên tố bc là yz, chỉ chứa thừa số nguyên tố abc là xyz.vì A là ước của chính nó . do đó số ước của A bằng: x + y + z + xy + yz + xz + xyz + 1 = x(z + 1) + y(z + 1) + xy(z + 1) + (z + 1) = (z + 1)(x + y + xy + 1) = (z + 1)[(x + 1) + y(x + 1)] = (x + 1)(y + 1)(z + 1). Ví dụ : số B = 2 3 3 5 5 4 thì số ước sốcủa B là (3 + 1)(5 + 1)(4 + 1) = 4.6.5 = 120. Bài tập. 1. Tìm sốtự nhiên nhỏ nhất: a) Có 9 ước; b) Có 15 ước. 2. Cho sốtự nhiên B = a x b y trong đó a,b là các số nguyên tố khác nhau , x, y là các sốtự nhiên khác 0 . biết B 2 có 15 ước . hỏi B 3 có bao nhiêu ước? 3. Tìm sốtự nhiên a , biết 105 a và 16 ≤ a ≤ 50 . 4. Một trường có 805 học sinh. Cần phải xếp mỗi hang bao nhiêu học sinh để học sinh ở mỗi hàng là như nhau , biết rằng không xếp quá 35 hàng và cũng không ít hơn 15 hàng. 5. Sốtự nhiên n có tổng các ước bằng n (không kể n) được gọi là số hoàn chỉnh (số hoàn thiện , số hoàn toàn). a) Chứng tỏ rằng các số 28,496 là số hoàn chỉnh. b) Tìm số hoàn chỉnh n , biết n = p.q trong đó p,q là các số nguyên tố. 6. Tìm sốtự nhiên n, biết rằng số n có 30 ước và khi phân tích thành thừa số nguyên tố thì có dạng n = 2 x 3 y trong đó x + y = 8. C®8. Ước chung và Ước chung lớn nhất 1Ước chung của hai hay nhiều số là ước của tất cả các số đó. Bội chung của hai hay nhiều số là bội của tất cả các số đó. .ƯCLN của hai hay nhiều số là số lớn nhất trong tậphợp các ước chung của các số đó. 2. Muốn tìm ƯCLN của hai hay nhiều số , ta thực hiện ba bước sau: Bước 1: Phân tích mỗi số ra thừa số nguyên tố. Bước 2 : Chọn các thừa số nguyên tố chung. Bước 3 : Lập tích các thừa số đó , mỗi thừa số lấy với số mũ nhỏ nhất của nó.tích đó là ƯCLN phải tìm. Chú ý: Hai hay nhiều số có ƯCLN là 1 gọi là các số nguyên tố cùng nhau. Trong các số đã cho , nếu số nhỏ nhất là ước của các sốcòn lại thì ƯCLN của các số đã cho là số nhỏ nhất đó. 3.Muốn tìm ước chung của các số đã cho ,ta tìm các ước ƯCLN của các số đó Ví dụ1. Tìm sốtự nhiên a biết rằng khi chia 39 cho a thì dư 4, còn khi chia 48 cho a thì dư 6. Giải. Chia 39 cho a thì dư 4 , nên a là ước của 39 – 4 = 35 và a > 4 .chia 48 cho a thì dư 6 nên a là ước của 48 – 6 = 42 và a > 6 . do đó a là ước chung của 35 và 42 dông thồng a > 6. Ư(35) = { 1, 5, 7, 35} ; Ư(42) = {1,2,3,6,7,14,21,42}. ƯC(35,42) = { 1,7}. Vậy a = 7 . Ví dụ.2 Tìm hai sốtự nhiên cố tổng 432 và ƯCLN cua chúng bằng 36. Giải. Gọi hai sốtự nhiên phải tìm là a và b . vì ƯCLN(a,b) = 36 , nên a = 36c và b = 36d , (c,d) = 1. theo đề bài tổng của hai số bằng 432 nên: a + b = 432 hay 36(c + d) = 432,do đó c + d = 12. như vậy ta phải tìm các cặp số c,d có tổng bằng 12 và (c,d) = 1 . các cặp số đó là 1 và 11 ; 5 và 7.các sốtự nhiên cần tìm là a = 36 , b = 396 và a = 180 , b = 252 hoặc ngược lại. Bài tập: 1. Viết các tậphợp : a) ƯC(8,12,24); ƯC(5,15,35); b) BC(8,12,24); BC(5,15,35); 2. Tìm giao của hai tậphợp : A = { n ∈ N : n là ước của 18} B = { m ∈ N : m là ước của 36}. 3. Tìm sốtự nhiên a, biết rằng khi chia 264 cho a thì dư 24 , còn khi chia363 cho a thì dư 43. 4. Có 100 quyển vở và 90 bút bi. Cô giáo chủ nhiểm muốn chia số vở và bút thành mộtsốphần thưởng như nhau gôm cả vở và bút để phát phần thuopwngr cho học sinh. Như vậy thì còn lại 4 quyển và 18 bút bi không thể chia đều cho các học sinh.tính sô học sinh được thưởng?. 5. Gọi G là tậphợp các số là bội của 3 ; H là tậphợp các số là bội của 18. tìm G ∩ H. 6. Có mộtsố sách giáo khoa. Nếu xếp thành từng chồng 10 cuốn thì vừa hết ,thàng từng chồng 12 cuốn thì thừa 2 cuốn, thành từng chồng 18 cuốn thì thừa 8 cuốn .biết rằng số sách trong khoảng từ 715 đến 1000 cuốn.tìm số sách đó. Bài tập cñng cè. 1. Tìm ƯCLN của ác số có 9 chữ số được viết bởi các chữ số1 , 2, 3 ,4, 5 ,6 ,7 ,8 ,9 và trong mỗi số các chữ số đều khác nhau. 2. Tìm hai sốtự nhiên biết rằng tổng của chúng bằng 66 , ƯCLN của chúng bằng 12. [...]... 5.7 11 2 5.7.7 .11 7 .11 77 Quy đồng mẫu ba phânsố : 16 − 5 10 ; ; 11 9 77 Mẫu chung : 7.9 .11 = 693 Các thừa số phụ tương ứng : 9.7 = 63 ; 7 .11 = 77 và 9 Vậy : 16 16 .63 10 08 − 5 − 5.77 − 385 10 10 .9 90 = = ; = = ; = = 11 11 .63 693 9 9.77 693 77 77.9 693 Bài tập: 1 Tìm mẫu chung của các phânsố sau : a) 13 2 3.5 2 2 và 11 − 19 − 23 ; b) 2 và 2 2 3 5.7 3 7 .11 3.7 2 .13 4 2 Tìm tất cả cá phânsố mà tử. .. A= −2 −3 3 1 111 + + + + + + 9 4 5 15 57 3 36 B= 11 − 5 1 − 3 11 + + + + + + 2 5 7 6 35 3 41 C== 1 3 11 −7 4 2 + + + + + + 2 5 9 12 7 18 35 7 2 Tìm các số nguyên x biết : a) 1 − 2 11 − 3 2 3 5 1 + + + ≤ x< + + + + 3 5 6 5 4 7 5 7 4 b) 5 − 4 − 20 12 − 11 −3 7 4 8 2 + + + + . ®Ò 1: Số phần tử của một tập hợp .Tập hợp con 1. Một tập hợp có thể có một ,có nhiều phần tử, có vô số phần tử, cũng có thể không có phần tử nào. 2 .Tập hợp không có phần tử nào gọi là tập rỗng .tập. Cho hai tập hợp A = { 3,4,5}; B = { 5,6,7,8,9 ,10 }; a) Mỗi tập hợp có bao nhiêu phần tử? b) Viết các tập hợp khác tập hợp rỗng vừa là tập hợp con của tập hợp A vừa là tập hợp con của tập hợp B. c). thuộc tập hợp B.vì vậy chỉ có một tập hợp C vừa là tập hợp con của tập hợp A ,vừa là tập hợp con của tập hợp B: C = {5}. c) C ⊂ A và C ⊂ B. biểu diễn bởi hình vẽ: Bài tập: 1. Cho hai tập hợp M